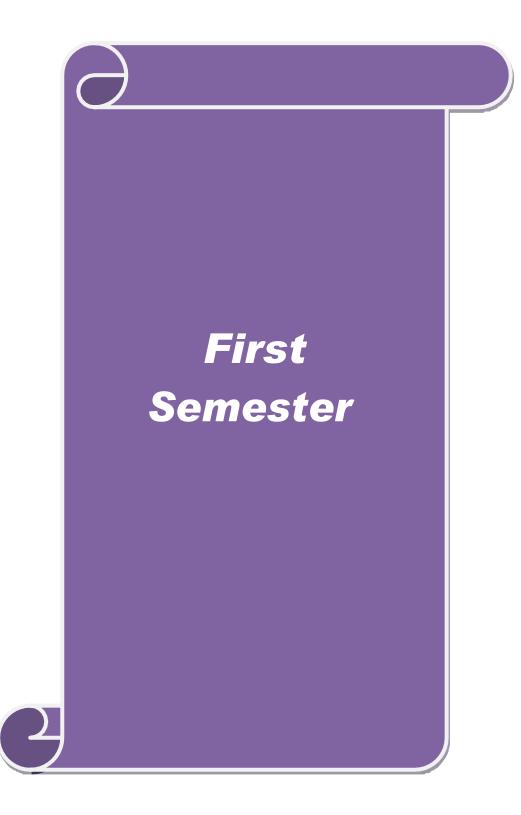


Program Educational Objectives (PEOs) The M.Sc. Nanoscience and Technology program describe accomplishments that graduates are expected to attain within five to seven years after graduation. **PEO1** Outshine in academics and research in different motifs of Nanoscience and Nanotechnology through post graduate education. **PEO2** Solid foundation in their respective core subjects such as physics, chemistry and biology in addition to nanoscience and technology. **PEO3** In-depth knowledge in synthesis and characterization of novel nanomaterials with multiple applications. PEO4 Good theoretical and practical knowledge so as to comprehend, analyze, design, and create products and solutions for the real life problems. PEO5 Professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address energy, environmental and biomedical applications. PEO6 Academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career. Interact with their peers in other disciplines in industry and society and **PEO7** contribute to the economic growth of the country.

Program	Specific Outcomes (PSOs)
	e successful completion of M. Sc. Nanoscience and Technology program, the are expected to
PSO1	Understand and apply principles of physics, chemistry and engineering for understanding the scientific phenomenon in nano domain.
PSO2	Understand and apply mathematical techniques for describing and deeper understanding of nano systems.
PSO3	Understand and apply quantum mechanical methods for particles in various physical systems and processes.
PSO4	Understand and apply inter-disciplinary concepts and computational simulation for understanding and describing the natural phenomenon.
PSO5	Understand and apply principles of quantum mechanics for understanding the nano systems in quantum realm.
PSO6	Provide exposure in various specialization of Nanotechnology.
PSO7	Provide exposure to advanced experimental/theoretical methods for measurement, observation, and fundamental understanding of phenomenon at nanoscale and nanosystems.
PSO8	Engage in research and life-long learning to adapt to changing environment.
PSO9	Having adaptive thinking and adaptability in relation to environmental context and sustainable development.
PSO10	Having a clear understanding of professional and ethical responsibility.


Program	Outcomes (POs)
On succe	essful completion of the M. Sc. Nanoscience and Technology program
PO1	Demonstrate knowledge on the physics/chemistry/biotechnology and basics of
	nanoscale science and technology for their multifunctional applications.
PO2	Demonstrate ability to synthesis and characterize the materials in general and
	also nanomaterials.
PO3	Project their skill in lithography and nanofabrication.
PO4	Having expertise in processing of nanomaterials, MEMS and bio MEMS as per
	needs and specifications.
PO5	Demonstrate an ability to visualize and work on laboratory and multidisciplinary
	tasks including material science, physics, chemistry and nanobiotechnology.
PO6	Demonstrate skills to use synthesis, processing and imaging equipments to
	analyze samples.
PO7	Able to propagate their knowledge to address problems of social relevance such
	as energy, environment and medicine through their specific electives.
PO8	Understanding the impact of nanomaterials on the society including
	environment, health and ecosystem.
PO9	Able to plan and execute their own innovative ideas in the form of projects,
	product design and development.
PO10	Develop confidence for self-education and ability for life-long learning.
	லிக்கபுகு

BHARATHIAR UNIVERSITY:: COIMBATORE 641 046 M. Sc. Nanoscience and Technology Curriculum (University Department)

(For the students admitted during the academic year 2023 - 24 onwards)

Course	Title of the Course	Credits	He	ours	Maxi	mum N	<u>larks</u>
Code	Title of the Course	Creans	Theory	Practical	CIA	ESE	Tota
	FIRST SE	MESTER			-	-	
13A	Physics of Nanomaterials	4	4	-	25	75	100
13B	Chemistry of Nanomaterials	4	4	-	25	75	100
13C	Biology for Nanotehnology	4	4	-	25	75	100
13D	Properties of Materials	4	4	-	25	75	100
1EA	Computational Methods	4	4		25	75	100
1EB	Electronic Devices	4	4	_			100
13P	Practical-I	4	-	6	25	75	100
1GS132	Introduction to Nanoscience and Technology	2	2	-	12	38	50
	Total	26	22	6			650
	SECOND S	EMESTEF	1	•	0	T	1
23A	Synthesis of Nanomaterials	4	4	-	25	75	100
23B	Characterization of Nanomaterials	4	4	-	25	75	100
23C	Micro and Nanofabrications	4	4	-	25	75	100
23D	Genetics and Nanobiotechnology	4	4	-	25	75	100
2EA	Nanoelectronics and Nanophotonics	4	4	_	25	75	100
2EB	Nanomagnetic Materials and Devices		-	_			
23P	Practical-II	4	-	6	25	75	100
2GS134	Applications of Nanotechnology	2	2	-	12	38	50
	Total	26	22	6			650
	THIRD SE			T			r
33A	Nanotechnology in Health Science	<u>§</u> 4	4	-	25	75	100
33B	Nanotechnology in Energy Conversion and Storage Devices	4	4	-	25	75	100
33C	Nanosensors and IoT Based Sensors	x 4 3	4	-	25	75	100
33D	Advances in Nanobiotechnology	4	4	-	25	75	100
3EA	Environmental Sustainability of	ina9-	4	_	25	75	100
3EB	Societal Impacts of Nanotechnology	-					
37V	Summer Internship	2	-	-	50		50
33P	Practical-III	4		6	25	75	100
1GS132	Introduction to Nanoscience and Technology	2	2	_	12	38	50
	Total	28	22	6			700
	FOURTH S	EMESTER	ł				
43A	IPR, Biosafety and Research Ethics	2			12	38	50
47V	Project and Viva-Voce	8			50	150	200
	Total	10					250
	Grand Total	90					2250
	ONLINEC	OURSES					
	Swayam, MOOC Course etc.	2	-	-			
	VALUE ADDE	ED COURS	SES				
	Value Added Course – I	2	30	-	50	-	50
	Value Added Course – II	2	30	-	50	-	50
	CERTIFICAT	E COURS	1				
	Certificate Course – I	4	30-40	-	100	-	100
	Certificate Course – II		30-40		100		100

Course code	13A		L	Т	Р	С
	13 A	PHYSICS OF NANOSTRUCTURES				
Core Pre-requisite			<u>4</u> Sylla Vers		0 202 202	4 20 - 21
Course Object	tives:					
 Learn the To unders Bridging using math To learn 	fundame tand the between hematica the fund	this course are to: ental physical principles underlying the nanoscale material central concepts and principles in quantum mechanics for macroscopic thermodynamics and microscopic statistic al methods. lamental principles underlying and connecting the struct formance of materials.	sma cal n	necha	nics	by
Expected Cou						
		pletion of the course, student will be able to:			r	
	=	physics behind the small systems (Nanomaterials).				K2
		um mechanical concepts to the multidimensional nanosyst			K	K3
thermod	lynamics					K2
		evaluate Crystal structure of materials and changes at nano				,K5
5 Underst material		fundamental science and engineering principles rele	evant	to	K	2
K1 - Rememb	er: K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	<u> </u>	Treate		
Unit:1		Quantum Mechanics - I			hou	rs
and particle -	Uncertai equation	al theory - classical and quantum theory of specific heat inty principle - Time dependent Schrodinger equation - T -Dirac's Notation - Equations of Motion – Schrodinger ion.	ime	indep Ieisen	ende berg	ent g -
Unit:2		Quantum Mechanics - II			hou	
tunnelling -	Schrodin	Infinite potential well - Finite potential well - Quan ager equation for hydrogen atom – Many electron ato enheimer Approximation – Molecular Orbital Theory	ms	– Ch	emic	cal
Unit:3		Statistical Mechanics and Chemical Kinetics		12	hou	rs
Statistical dis blackbody ra Interpretation	diation of therr	ns – Rayleigh Jeans law formula and Planck radiati – Macroscopic states – Microscopic states – Ensemb nodynamic variables – Equipartition Theorem – Chemic al equilibrium – law of mass action – Ionization formula –	les - al ec	formu – Sta quilibi	la f tistic rium	for cal
Unit:4		Solid State Physics - I		12	hou	re
Crystal Struct		Classification of Crystals – Unit Cell – Bravais Lattices ections and Crystal Planes – Packing Factor – SCC -BCC		ymme	etry	in

Diamond – Crystal Structure Determination – Bragg's Law – Debye Scherrer Method – Determination of lattice parameters from the powder diffraction method – Laue Method-Bragg's Monochromator-Bragg's Diffractometer-Reciprocal Lattice-Chemical Bonding in Solids-Point Defects-Line Defects-Problems.

Unit:5Solid State Physics – II12 hoursFree electron theory of metals – Quantum theory of free electrons – Electrons in 3D potential
box – Fermi Energy and Density of Free Electron States – Band Theory of Solids – Distinction
between metal, semiconductor and insulator based on the band theory – Bloch's Theorem - -
Kronig-Penny model for the periodic potential – Brillouin zones – Reduced E versus k curve-
Problems

Unit:6	Contemporary Issues	2 hours
Expert lecture	s, online seminars – webinars	

		Fotal Lecture hours	62 hours
Bo	Book (s) for Study		
1	1 Quantum Mechanics, G. Aruldhas, Prentice Hall of India	a, (2010).	
2	-	•	rs (2020)
3	3 Materials Science by G Rangarajan and M S Vijaya, Mc Grav	w Hill Education (2014).	
	of the		
Bo	Book (s) for Reference		
1	A Text Book of Quantum Mechanics, P.M. Mathews & (2010).	K. Venkatesan, Tata Mo	cGraw Hill,
2	2 Introduction to Solid State Physics, Charles Kittel, 8 th Ed	dition, Wiley (2012).	
3	3 Solid State Physics: Structure and Properties of Material Publishing house, New Delhi, India, (2007).	s, A.M.Wahab, 2 nd Edit	ion, Narosa
4	4 Solid State Physics, S.O.Pillai, 4 th Edition, New Age Into (2001).	ernational Publishers, N	ew Delhi,
Re	Related Online Contents [MOOC, SWAYAM, NPTEL, '	Websites etc.]	
1	1 <u>https://nptel.ac.in/courses/115/106/115106066/</u>		
2	2 <u>https://nptel.ac.in/courses/122/106/122106034/</u>		
3	3 <u>https://nptel.ac.in/courses/112/105/112105123/</u>		
4	4 <u>https://nptel.ac.in/courses/112/108/112108148/</u>		
5	5 <u>https://nptel.ac.in/courses/115/105/115105099/</u>		
6	6 <u>https://nptel.ac.in/courses/115/104/115104109/</u>		
Cou	ourse Designed by Dr N. Ponpandian e-mail	ponpandian@buc.edu.	in

Mappi	ng with	Progra	mme O	utcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	L	L	S	S	S	S
CO2	S	S	М	S	S	Μ	Μ	L	S	S
CO3	S	М	М	М	Μ	S	L	L	L	S
CO4	S	S	М	L	М	Μ	L	М	Μ	S
CO5	S	S	S	S	S	L	Μ	Μ	L	S
S	Stro	ong		Μ	Medi	um		L		Low

Course code 13B	CHEMISTRY OF NANOMATERIALS	L	Т	Р	С	
Core	CHEWISTRI OF NANOWATERIALS	4	0	0	4	
Pre-requisite	Should have studied Chemistry/Allied chemistry/Applied chemistry as a major subject during graduate Programme.	Syllabus Version			2020 - 2021	
Course Objectives:						
 To be able to get To lay foundati development To enhance the let 	e basic concepts of structure of atomic structure familiarized with almost all the basic chemistry co ion for material aspects of inorganic chemis evel of understanding of polymer structure and pol ith basics of kinetic of chemical reactions.	try in	n resea		and	
	mpletion of the course, student will be able to:					
	sic of structure of atoms and molecules			ŀ	K1	
	atics and photochemistry of organic molecules			k	K2	
	ock elements for prepare metal chalcogenide			ŀ	K3	
	omposite into differ applications			k	K3	
solar energy appl					K5	
KI - Remember; K2	- Understand; K3 - Apply; K4 - Analyze; K5 - Ev	aluate	e; K6 -	Creat	te	
	e and the					
Unit:1 The structural theory	Chemical Bonds of organic chemistry - chemical bonds - the octet	rule -		hour g Lev		
The structural theory structures - exceptio quantum mechanics structure of borane s geometry: valence s	Chemical Bonds of organic chemistry - chemical bonds - the octet ns to the octet rule - formula charge – resonance - atomic and molecular orbitals - The structure of sp ² - The structure of beryllium hydride sp hybrid hell electron pair repulsion (VSEPR) theory - Po- ules - Representations of organic compounds structure	e - ene of met dizational olar co	writing ergy ch hane sp on - Mo ovalent	g Lev ange o ³ - T olecu - po	vis s - The lar	
The structural theory structures - exceptio quantum mechanics structure of borane s geometry: valence s	of organic chemistry - chemical bonds - the octet ns to the octet rule - formula charge – resonance - atomic and molecular orbitals - The structure of sp^2 - The structure of beryllium hydride sp hybrid hell electron pair repulsion (VSEPR) theory - Po	e - ene of met dizational olar co	writing ergy ch hane sp on - Mo ovalent formula	g Lev ange o ³ - T olecu - po	vis s - The lar lar	
The structural theory structures - exceptio quantum mechanics structure of borane s geometry: valence si and non polar molect Unit:2 Absorption and Ads isotherms - multila Applications, factors	of organic chemistry - chemical bonds - the octet ns to the octet rule - formula charge – resonance - atomic and molecular orbitals - The structure of sp^2 - The structure of beryllium hydride sp hybrid hell electron pair repulsion (VSEPR) theory - Po- ules - Representations of organic compounds structure	e - end of met dizatio blar co blar co co blar co blar co co co co co co co co co co co co co c	writing ergy ch hane sp on - Mo ovalent formula formula <u>12</u> nuir ads require	g Lev ange o ³ - T olecu - po s. <u>hou</u> sorpti d) a	vis s - The lar lar lar rs ton	
The structural theory structures - exceptio quantum mechanics structure of borane s geometry: valence si and non polar molect Unit:2 Absorption and Ads isotherms - multila Applications, factors Catalysis: Homogen enzyme catalysis. Colloids: Classificati true solutions - col macromolecular and Brownian movement	of organic chemistry - chemical bonds - the octet ns to the octet rule - formula charge – resonance - atomic and molecular orbitals - The structure of sp ² - The structure of beryllium hydride sp hybrid hell electron pair repulsion (VSEPR) theory - Po- ules - Representations of organic compounds struct Chemical Kinetics sorption: Mechanism and types - Freundlich and I yer adsorption and BET isotherm (no derivat affecting adsorption of gases on solids and liquids	e - end of met dizatio blar co tural f Langn tion s. ty and distir c mul ation poten	writing ergy ch hane sp on - Mo ovalent formula formula uir ads require d selec nction b ti-mole of col	g Lev ange of ange of a construction of a construction and a construction of a construction and a constructi	vis s - The lar lar lar rs on nd v -	
The structural theory structures - exceptio quantum mechanics structure of borane s geometry: valence si and non polar molect Unit:2 Absorption and Ads isotherms - multila Applications, factors Catalysis: Homogen enzyme catalysis. Colloids: Classificati true solutions - col macromolecular and Brownian movemen double layer (qualitat Emulsion: Types an	of organic chemistry - chemical bonds - the octet ns to the octet rule - formula charge – resonance - atomic and molecular orbitals - The structure of sp ² - The structure of beryllium hydride sp hybrid hell electron pair repulsion (VSEPR) theory - Poules - Representations of organic compounds struct Chemical Kinetics sorption: Mechanism and types - Freundlich and I yer adsorption and BET isotherm (no deriva affecting adsorption of gases on solids and liquids ous and heterogenous (Single reactant) - activition, preparation and purification - Colloidal state lloids and suspension = lyophilic - lyophobic associated colloids - properties and applic t - Coagulation and Schultz-Hardy rule - Zeta	e - end of met dizatio blar co tural f Langn tion s. ty and distir c mul ation poten	writing ergy ch hane sp on - Mo ovalent <u>Formula</u> <u>12</u> nuir ads require d selec nction b ti-mole of col tial and	g Lev ange olecu - po s. hou sorpti d) a stivity betwe cular lloids d Ste	vis s - The lar lar lar urs ion and y - cen s - s - ern	

Theory of light absorption-electronic excitation-properties & energies of excited states-Jablonski diagram-photo physical processes-fluorescence and phosphorescene-excimers and exciplexes-intersystem crossing-energy transfer-geometry of excited states-quantum efficiency. Photochemical reactions of ketones – Norrish Type I, Norrish Type II – Paterno – Buchi reaction, Pericyclic Reactions – Characteristics – Electrocyclic reactions of 1, 3dienes and 1, 3, 5-trienes.[2+2] and [4+2]cycloadditions. Sigmatropic reactions – [1, 3], [1, 5] and [3, 3] Sigmatropic shifts.

Unit:4	Transition and Inner Transition Elements	12 hours
transition e elements. characterist compounds and Nome	and electronic configurations of transition element - General charactelements - comparison of first transition series with second and the Position of lanthanides and actinides in the periodic tables tics of both series and their comparisons. Basic concepts of constrained (mono, di, and poly dentate ligand) - chelation - coordination enclature of coordination compounds. Nature of metal ligand to tudy by valence bond theory and crystal field theory.	hird series - general pordination on numbers
Unit:5	Chemistry of Polymers	12 hours
plasticizers separated b nanocompo polymer n	n and review of Polymer - Properties of polymers - Polymer - fillers and reinforcement- Polymer blends- toughen plastics blends - Polymer composites - mechanical properties - Introduction osites - Basic materials for polymer nanocomposite - Character anocomposites - Properties of polymer nanocomposites - The osites - Thermoset Nanocomposites.	and phase to polymer rization of
TIL		
Unit:6	Contemporary Issues	2 hours
Expert lecti	ures, online seminars – webinars	
	Sold Contract Parties Total Lecture hours	62 hours
Book (s) fo		
	ic Chemistry, T. W. Graham Solomons, Craig B. Fryhle, Scott A. S	nyder, 12 th
	on, John Wiley & Sons, New York, 2017.	J
2 Select	ted Topics in Inorganic Chemistry, Malik, Wahid U, Tuli G.D, Ma d Limited, 2009.	dan R.D. S.
	amentals of Molecular Spectroscopy, C. N. Banwell, 5 th Edition, Mation; 2019.	IcGraw Hill
4 Polyn	ner Science, V.R.Gowariker, N.V. Viswanathan, and Jayadev Sreedha ational Publishers, 2015.	ar, New Age
	cal Chemistry, Peter Atkins, Julio de Paula, OUP Oxford, 2010.	
Book (s) fo	r Reference	
	nced Organic Chemistry: Reactions, Mechanisms, and Structure, Mich, March's 8 th Edition, Wiley, 2019.	hael B.
2 Advar	nced Inorganic chemistry, F. A. Cotton, G. Wilkinson, C. A. M nann, 6 th Edition, Wiley, 2016.	Murilo, M.
	ner Matrix Composites and Technology, Ru-Min Wang, Shui-Ro	ong Zheng
2	Theng, 1 st Edition, Woodhead Publishing, 2011.	Jing Zheng

Rela	ated Online Conter	nts [MOOC, SWAYAM, N	NPTEL, Webs	sites etc.]
1	https://www.youtu	ube.com/watch?v=p_BMW	RaL62w	
2	https://nptel.ac.in/	courses/104/103/10410307	1/	
3	http://nptel.iitm.ac	e.in		
4	https://nptel.ac.in/	noc/courses/noc19/SEM1/r	10c19-cy03/	
Cours	se Designed By	Dr P. Sakthivel	e-mail	sakthivel.p@buc.edu.in

Mappi	ng with	Progra	mme O	utcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	Μ	S	М	Μ	L	S	М
CO2	S	S	L	Μ	S	L	Μ	L	S	S
CO3	S	S	L	S	Μ	L	М	L	Μ	М
CO4	М	S	S	S	S	М	Μ	М	Μ	М
CO5	S	S	L	S	S	М	S	М	Μ	S
S	Stro	ong		Μ	Medi	um		L		Low

Course code	13C	BIOLOGY FOR NANOTECHNOLOGY	L	Т	Р	С
Core			4	0	0	4
Prerequisite		Basic knowledge on Biology or Life Sciences		abus sion	202 202	
Course Obje						
eukaryot 2. Know th	tes. 1e basio	ndamental cell science and its growth with response biomolecules and its role in energy generation provided ge on natural defense mechanisms and the tech	cocess	•	-	anc
Expected Co	ourse (Dutcomes:				
		completion of the course, student will be able to:				
1 Remem	ber the	e elemental concepts behind the cell structure and	functi	on		K1
2 Underst process		he naturally existing bio nanostructures and	its as	sembli	ng	K2
-		TP generation process via different metabolic path				K4
compor	nents ir	ne principles of immune mechanisms to combat in the process of self-protection			elf-	K2
5 Analyz	e the ir	nteractions of antigen and antibody by immuno tec	chniqu	es		K4
			-			
K1 - Remen	nber; k	X2 - Understand; K3 - Apply; K4 - Analyze; K5 -	Evalu	ate; K	6 - Cre	eate
Unit:1 Structure an	d func	Basics of Biology tion of cells and organelles in Prokaryotes and Eu	ıkaryo	otes. – I	12 ho Nucle	ours us -
Unit:1 Structure an chromosome Endoplasmi	ld func e orga c retic	Basics of Biology	ıkaryo materi	otes. – I al, Ri	12 ho Nucle boson	ours us - nes,
Unit:1 Structure an chromosome Endoplasmi	ld func e orga c retic	Basics of Biology tion of cells and organelles in Prokaryotes and Eu anization, structure and function of genetic re culum, Golgi apparatus, Mitochondria, Lysoso	ıkaryo materi	otes. – I al, Ri	12 ho Nucle boson	ours us - nes, sma
Unit:1 Structure an chromosome Endoplasmi membrane. Unit:2 Structure, or oligosacchar	d func e orga c retic Cell di rganiza rides au cids –	Basics of Biology tion of cells and organelles in Prokaryotes and Eu anization, structure and function of genetic reculum, Golgi apparatus, Mitochondria, Lysoso vision and Cell Cycle - Mitosis - Meiosis. Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate nd polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s	ikaryo materi me a es – m s class	otes. –] al, Ri nd the onosac	12 ho Nucley boson e Plas 12 ho cchario on, Lip	ours us - nes, sma ours des, oids
Unit:1 Structure an chromosome Endoplasmi membrane. Unit:2 Structure, or oligosacchar and Fatty ac RNA and its	d func e orga c retic Cell di rganiza rides au cids –	Basics of Biology tion of cells and organelles in Prokaryotes and Eu unization, structure and function of genetic reculum, Golgi apparatus, Mitochondria, Lysoso vision and Cell Cycle - Mitosis - Meiosis. Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate nd polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s	ikaryo materi me a es – m s class	otes. –] al, Ri nd the onosac	12 ho Nucley boson e Plas 12 ho cchario on, Lip DNA	ours us - nes, sma ours des, oids and
Unit:1 Structure an chromosome Endoplasmi membrane. Unit:2 Structure, or oligosacchar and Fatty ac RNA and its Unit:3 Energy Me Pathway), 7	d func e orga c retic Cell di rganiza rides a cids – s types tabolis Tricarb	Basics of Biology tion of cells and organelles in Prokaryotes and Eu anization, structure and function of genetic reculum, Golgi apparatus, Mitochondria, Lysoso vision and Cell Cycle - Mitosis - Meiosis. Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate nd polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s	ikaryo materi me a es – m s class structu on - (Chain,	onosac ificatio re of I Glycoly	12 ho Nucley boson e Plas 12 ho cchario on, Lip DNA 12 ho ysis (1 trate	ours us - nes, sma ours des, pids and ours EMI
Unit:1 Structure an chromosom Endoplasmi membrane. Unit:2 Structure, or oligosacchar and Fatty ac RNA and its Unit:3 Energy Me Pathway), 7 phosphoryla	d func e orga c retic Cell di rganiza rides a cids – s types tabolis Tricarb	Basics of Biology tion of cells and organelles in Prokaryotes and Euglianization, structure and function of genetic methods of the structure and function of genetic methods of the structure and function of genetic methods. Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate and polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s Energy Metabolism m - aerobic respiration and anaerobic respiration polylic acid cycle (TCA), Electron Transport (and oxidative phosphorylation - ATP generation, G	ikaryo materi me a es – m s class structu on - (Chain,	onosac ificatio re of I Glycoly	12 ho Nucley boson e Plas 12 ho cchario on, Lip DNA 12 ho ysis (1 trate - sis.	ours us - nes, sma ours des, oids and ours EMI leve
Unit:1Structure an chromosomeEndoplasmi membrane.Unit:2Structure, or oligosacchar and Fatty ac RNA and itsUnit:3Energy Me Pathway), ' phosphorylaUnit:4History of ir of the immu Oxygen ind	d func e orga c retic Cell di rganiza rides at cids – s types tabolis Tricarb ation at mmune une sys lepende	Basics of Biology tion of cells and organelles in Prokaryotes and Eu unization, structure and function of genetic regulum, Golgi apparatus, Mitochondria, Lysoso vision and Cell Cycle - Mitosis - Meiosis. Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate nd polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s Energy Metabolism m - aerobic respiration and anaerobic respiration	ikaryo materi me a es – m s class structu on - (Chain, lucono esis, (xygen	al, Ri al, Ri nd the onosac ificatio re of I Glycoly , Subs eogene	12 ho Nucley boson e Plas 12 ho cchario on, Lip DNA 12 ho ysis (1 trate sis. 12 ho d org ndent	ours us - nes, sma ours des, pids and ours EMI leve ours gans and
Unit:1Structure an chromosomeEndoplasmi membrane.Unit:2Structure, or oligosacchar and Fatty ac RNA and itsUnit:3Energy Me Pathway), ' phosphorylaUnit:4History of ir of the immu Oxygen ind	d func e orga c retic Cell di rganiza rides at cids – s types tabolis Tricarb ation at mmune une sys lepende	Basics of Biology tion of cells and organelles in Prokaryotes and Euclarization, structure and function of genetic methods, structure and function of genetic methods, structures in Biological Systems Nanostructures in Biological Systems ation and functions of biomolecules; Carbohydrate and polysaccharides, Proteins – amino acids and its (saturated & unsaturated) and Nucleic acids – s Energy Metabolism m - aerobic respiration and anaerobic respiration polysic acid cycle (TCA), Electron Transport (and oxidative phosphorylation - ATP generation, G Immunology ology, Innate and acquired immunity, Hematopoid stem. B and T- cell activation. Phagocytosis – O ent killing. Antigen -Properties of antigen. Antigen	ikaryo materi me a es – m s class structu on - (Chain, lucono esis, (xygen	al, Ri al, Ri nd the onosac ificatio re of I Glycoly , Subs eogene	12 ho Nucley boson e Plas 12 ho cchario on, Lip DNA 12 ho ysis (1 trate sis. 12 ho d org ndent	ours us - nes, sma ours des, pids and ours EMH leve ours ans and and

Un	it:6	Contemporary Issues	2 hours
Ex	pert lec	ctures, online seminars– webinars	ŀ
		y: Learn the process of Covid 19 vaccine production and understa	
		nanism of antibody production in human body against Coronaviru	
Re	port the	e importance of vaccination to combat the life threatening disease	28.
		Total Lecture hours	62 hours
Bo	ok (s) f	for Study	
1	A Tex	t of Microbiology. Revised edition, Dubey RC and Maheswar ompany Ltd., New Delhi, (2012)	i DK S. Chand
2	Text I	Book of Microbiology, Ananthanarayan & Paniker's. 9 th Editio (2013).	on, Universities
3		biology, Pelczar TR M J Chan ECS and Kreig N R Tata McC York, (2006).	Braw-Hill INC.,
Bo	ok (s) f	for Reference	
1		biology, Prescott L M, J P Harley and D A Klein, Sixth edition, McGraw Hill, (2005).	n, International
2	Princi	ples of Biochemistry (IE <mark>), Lehninger, Da</mark> vid L.Nelson7 th Edition,	, (2017).
3		Immunology - Richard A Goldsby, Thomas J Kindt. Barbara A C n, W H Freeman and company, New York, (2000).	Osborne, Fourth
4	Immu	nology and Immuno t <mark>echnology, Cha</mark> kravarthy A R, 1 st E rsity Press, India. ISBN: 9780195676884, (2006).	Edition, Oxford
		A Standard Contraction of the state	
Re	lated (Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https:/	/www.elsevier.com/books/bacterial-physiology-and- olism/sokatch/978-1-4832-3137-2	
2	https:/	//www.frontiersin.org/journals/microbiology/sections/microbial- ology-and-metabolism	
		//www.ncbi.nlm.nih.gov/books/NBK10779/	

Mappi	ng with	Progra	mme Ou	itcomes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	L	S	Μ	S
CO2	S	S	Μ	М	S	S	М	S	S	S
CO3	М	L	L	L	М	Μ	S	S	Μ	S
CO4	М	М	L	Μ	S	S	S	S	S	S
CO5	S	S	Μ	Μ	S	S	S	S	S	S
S	Stro	ong		Μ	Medi	um		L	1	Low

Course code	13D	PROPERTIES OF MATERIALS	L	Т	Р	C
Core	1		4	0	0	4
Pre-requisite		Fundamental knowledge in physics	Sylla Vers		202 -202	
Course Objec	tives:	· · · · · ·				
 Remember to process Understar for selecti To know conductiv for intrins Understar Understar Understar Understar Expected Cou On the success 1 The stud and natur 2 The stud and defeed	er the cor sing and p ad the co on of exi- v about ity and r ic and ex- ad the cor- ad the cor- on of exi- rse Outer esful corr ent will cts nature ent will	pletion of the course, student will be able to: demonstrate a basic remembering of the bonding, struc materials. demonstrate an understanding of the properties of mat e of the materials. demonstrate an understanding of approaches to concept	cessin ures, i lev - Hal material ctures erials	ng-pr and c el c l coe rials syste	oper defec once fficie	ties cts. pts, ents
	lent will	demonstrate an understanding of mechanical and o	ptical		K2,ŀ	ζ4
5 The stuc materials		l demonstrate an understanding of magnetic propertie	es of		K2,ŀ	ζ4
K1 - Rememb	ber; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; H	X6 - (Create	e	
Unit:1		Structure of Materials		12	ho	ire
	ting in	solids-binding energy – interatomic spacing – varia	tion			
	s – Sing	le crystals – polycrystals– Non crystalline solids - Stru				-
Unit:2		Crystal Imperfections		12	2 hou	irs
Imperfection Vacancies –	Interstiti	 Point and line defects-Frenkel defect –Schottky defectals Dislocations - Generation of dislocation -Geometry imperfection – Importance of defects – grain size distribution 	of d	ger v	vecto	rs-
Unit:3	Ν	Aechanical and Thermal Properties of Materials		12	2 hou	irs
grain growth	ons, vibra	Elastic and plastic deformation-Work hardening – Recry				[
Unit:4		Mechanical And Optical Properties		12	ho	urs
		Light interaction with solids – Atomic, electronic in effection, reflection, absorption, transmission, luminescent		tion,	non	_

Unit:5		Magnetic Pro	operties		12 hours
Dia a	nd Para-magn	etism-ferro, ferri and antife	erromagnetism-	magnetic hysteresi	s - Weiss
		y -, Heisenberg's theory - ma	agnetic anisotropy	v – domain theory	- Exchange
length	-nanomagneti	sm - superparamagnetism.			
Unit:6		Contemporar	ry Issues		2 hours
Expert	lectures, onlin	ne seminars – webinars			
			Tota	l Lecture hours	62 hours
Book ((s) for Study				
1 Ma	terials Scienc	e and Engineering: An Intro	duction, W. D.	Callister, John Wi	ley & Sons
`	07).				
		rials: A Chemist's Perspe	ctive, K. Vijay	amohanan Pillai	and Meer
		ent Blackswan, (2013).			
		olid State Physics, C. Kittel, V			
4 Ma	terials Science	e and Engineering: A First Co	ourse, V. Raghava	n, Prentice Hall, (2	2006).
Book (s) for Refere	ice			
1 Sol	id State Physi	cs, A.J. Dekker, Macmillan &	z Co, (2000).		
2 Phy	sics of Semic	onductor Devices, Michael Sl	hur, Prentice Hall	l of India, (1995).	
3 Intr	oduction to N	anotechnology, Charles P Po	ole Jr., and Franl	k J. Ownes, John W	Viley Sons,
	., (2003).		E		
		Nanoscience & Nanotechnol	logy", H. S. Nalv	va (Ed.), American	n Scientific
	olishers, Califo				
5 "In	troduction to S	Solid State Physics", C. Kittel	l, Wiley Eastern I	Ltd., (2005).	
		Real Provide Action	in the Caller		
		BOUCATE TO ELEVATE			
		tents [MOOC, SWAYAM,		es etc.]	
1 <u>ht</u>	tps://nptel.ac.i	n/courses/113/104/11310407	6/		
	Designed By	Dr C. Viswanathan	e-mail	viswanathan@l	

Mappi	ng with	Progra	mme Oi	utcomes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	L	L	Μ	L	L	L	L	S
CO2	S	S	М	Μ	Μ	L	L	L	Μ	S
CO3	S	S	М	Μ	S	L	L	L	S	S
CO4	S	S	S	Μ	М	L	М	М	М	М
CO5	S	S	S	Μ	М	L	Μ	М	М	М
S	Stro	ong		Μ	Medi	um		L		Low

Course code	1EA		L	Т	Р	С
Elective		COMPUTATIONAL METHODS	4	0	0	4
Pre-requisite		Basic knowledge in Mathematics and Computer programing.	Sylla Vers	bus	202 -202	0
Course Objec	tives:				-	
2. To gain k	nowledg	a processing and analysis e on Numerical methods and scientific computing. Python programming for computation and IOT applicat	ions			
Expected Cou	rse Out	comes.				
		pletion of the course, student will be able to:				
		et and analyze data			K	4
-	-	asic concepts involved in molecular dynamics simulation	n		K	
		asics of data analysis.				
		e in computational quantum chemistry				
	-	camming for AI, Machine Learning and IOT applications	5		K	3
-	1 0	Undestand; K3– Apply; K4– Analyze; K5– Evaluate; K		eate		-
Unit:1		Biostatistics		1.0	hou	
Definitions – deviation – co two sided tes	oefficien t Vs one	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA).	agatio	ive st n of e	anda rrors	—
Definitions – deviation – cu two sided tes regression – A Unit:2	oefficien t Vs one Analysis egula-Fal	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line	ear con	ive st n of e relati	anda errors on a hou	rd nd rs
Definitions – deviation – co two sided tes regression – A Unit:2 Bisection, Re Seidal metho	oefficien t Vs one Analysis egula-Fal	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA). Root Finding si, Iteration and Newton-Raphson methods (SS), Gauss	ear con	ive st n of e relati 12 i and	anda errors on a hou	rd nd rs ss
Definitions – deviation – ce two sided tes regression – ze Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag	oefficien t Vs one Analysis egula-Fal ds. ward, ba grange fo	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA).	agation ear con 5 Jacob divide	ive st n of e relati 12 i and 12 d diff	anda errors on a hou Gau	rd , – nd rs ss ss rs ce
Definitions – deviation – ce two sided tes regression – ze Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag	oefficien t Vs one Analysis egula-Fal ds. ward, ba grange fo	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA). Root Finding Isi, Iteration and Newton-Raphson methods (SS), Gauss Numerical Interpolation and Differentiation ackward & general formula for interpolation, Newton's prmula (SB); Differentiation: Taylor Series, Runge Ku	agation ear con 5 Jacob divide	ive st n of e relati 12 i and d diff ethod	anda errors on a hou Gau	rd nd rs ss rs ce 4)
Definitions – deviation – co two sided tes regression – A Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag First Order an Unit:4 Computation Calculations LUMO), char	oefficien t Vs one Analysis egula-Fal ds. ward, ba grange fo nd Simul al quan using co rges, elec	accuracy – precision –bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA). Root Finding Isi, Iteration and Newton-Raphson methods (SS), Gauss Numerical Interpolation and Differentiation ackward & general formula for interpolation, Newton's bormula (SB); Differentiation: Taylor Series, Runge Ku taneous equation.	agationear con ear con s Jacob divide tta Me ernal ilar ort	ive st n of e relati 12 i and 12 d diff ethod 12 coord pitalH	anda errors on a hou Gau hou feren (RK hou linate	rd nd rs ss rs ce 4) rs cs. O,
Definitions – deviation – co two sided tes regression – A Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag First Order an Unit:4 Computation Calculations LUMO), char	oefficien t Vs one Analysis egula-Fal ds. ward, ba grange fo nd Simul al quan using co rges, elec	accuracy – precision – bias – Mean – standard deviation t of variation – confident limit sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA). Root Finding si, Iteration and Newton-Raphson methods (SS), Gauss Numerical Interpolation and Differentiation ackward & general formula for interpolation, Newton's ormula (SB); Differentiation: Taylor Series, Runge Ku taneous equation. Quantum Computation atum chemistry - Cartesian coordinates and interpolational software: Geometry optimization, Molecu ctron density. Importance for frequency calculation, plot	agationear con ear con s Jacob divide tta Me ernal ilar ort	ive st n of e relati 12 i and 12 d diff ethod 12 coord pitalH e theo	anda errors on a hou Gau hou feren (RK hou linate	rd rd rs ss rs ce 4) rs cs. co, cal
Definitions – deviation – co two sided tes regression – A Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag First Order an Unit:4 Computations LUMO), char vibrational sp Unit:5 Interpreter- I Numeric Typ	oefficien t Vs one Analysis egula-Fal ds. ward, ba rrange fo nd Simul al quan using co rges, elec pectra, In Program pes - Seq	accuracy – precision – bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Line of variance (ANOVA). Root Finding Isi, Iteration and Newton-Raphson methods (SS), Gauss Numerical Interpolation and Differentiation ackward & general formula for interpolation, Newton's bormula (SB); Differentiation: Taylor Series, Runge Ku taneous equation. Quantum Computation tum chemistry - Cartesian coordinates and interpolational software: Geometry optimization, Molecu etron density. Importance for frequency calculation, plot teraction energy: BSSE correction.	agationer con ear con s Jacob divide tta Me ernal ilar ort ting th	ive st n of e relati 12 i and 12 d diff ethod 12 coord pitalH e theo Func	anda errors on a hou Gau hou feren (RK hou linate IOM oretic hou	rd nd rs ss rs ce 4) rs cs. O, cal rs -
Definitions – deviation – co two sided tes regression – A Unit:2 Bisection, Re Seidal metho Unit:3 Newton's for formula, Lag First Order an Unit:4 Computations LUMO), char vibrational sp Unit:5 Interpreter- I Numeric Typ	oefficien t Vs one Analysis egula-Fal ds. ward, ba rrange fo nd Simul al quan using co rges, elec pectra, In Program pes - Seq	accuracy – precision – bias – Mean – standard deviation t of variation – confident limit of a measurement – prop sided test – F-test for precision - t-tests for bias – Lind of variance (ANOVA). Root Finding si, Iteration and Newton-Raphson methods (SS), Gauss Numerical Interpolation and Differentiation ackward & general formula for interpolation, Newton's ormula (SB); Differentiation: Taylor Series, Runge Ku taneous equation. Quantum Computation ntum chemistry - Cartesian coordinates and interpolational software: Geometry optimization, Molecu etron density. Importance for frequency calculation, plot teraction energy: BSSE correction. Python Execution - Statements - Expressions - Flow Contri uences - Strings - Tuples - Lists - Classes - Constructu	agationer con ear con s Jacob divide tta Me ernal ilar ort ting th	ive st n of e relati 12 i and 12 d diff ethod 12 coord pitalH e theo Func nheri	anda errors on a hou Gau hou feren (RK hou linate IOM oretic hou	rd nd rs ss rs ce 4) rs ce 4) rs ce 4) rs ce 4) rs ce 4) rs ce 4) rs ce 4) rs ce 4) rs ce ce ce ce ce ce ce ce ce ce

	Total Lecture hours 62 hour
Bo	ok (s) for Study
1	Elementary statistical methods, S.P. Gupta, Sultan Chand and sons publishers,(2014).
2	Numerical methods in science and engineering, M.K. Venkataraman, The National Publishi
	Company – Madras, (1999).
3	Numerical methods with programs in 'C', T. Veerarajan, T. Ramachandran, Tata McGraw
	Hill, New Delhi,(2006).
4	Numerical Methods, E. Balagurusamy, Tata McGraw Hill Education, 1999.
5	Mark Lutz, "Learning Python", O'Reilly Media, 5th Edition, (2016).
Bo	ook (s) for Reference
1	Python Programming: An Introduction to Computer Science, John M. Zelle
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://onlinecourses.nptel.ac.in/noc19_ee41/preview_
2	https://nptel.ac.in/courses/108/106/108106165/
3	https://nptel.ac.in/courses/115/107/115107122/
4	https://nptel.ac.in/courses/106/105/106105166/
Cou	rse Designed By Dr R. T. Rajendrakumar e-mail rtrkumar@buc.edu.in
	S a line of the second se

Mappi	ng with	Program	mme Ou	itcomes		ID-Ha				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	M	S	Μ	М	S	S
CO2	М	S	S	S S RATHI	SIVER.	Μ	L	М	Μ	S
CO3	S	L	Μ	М	М	L CONT	L	L	S	S
CO4	М	М	S	M EDUC		Μ	М	М	S	S
CO5	S	М	Μ	L	L	L	L	L	Μ	S
S	Stro	ong		Μ	Mediu	ım		L	,	Low

Course code	1EB	ELECTRONIC DEVICES	L	Т	Р	С
Electiv	e		4	0	0	4
Pre-requisite		Fundamental knowledge in physics	Sylla Vers		202 -202	
Course Objec						
componer 2. Operation	nts. 1 of digit	basics of number systems, digital logic levels, functionali tal electronics circuits. analyse various digital electronic circuits.	ty of	digita	al	
Expected Cou	rse Out	comes:				
		pletion of the course, student will be able to:				
		oncepts of Semiconductor Physics			K	4
		indamental concepts and techniques in digital electronics.			K	2
		asic concepts for advanced electronic devices.			K	3
		e in making diodes and LEDs			K	3
		creation to develop nano and molecular electronic devices	5.		K	4
		Undestand; K3– Apply; K4– Analyze; K5– Evaluate; K6		ate		
		CON NBABLICA CON				
an Intrinsic	Semicon	ial Variation within a Graded Semiconductor – Carrier Caductor – Fermi Level in a Semiconductor having In cuit p-n Junction.				
Unit:2		Operational Amplifiers		12	hou	rc
The ideal O building bloc stage; Op-Ar slew rate; O	cks-emitt np chara Op-Amp	nverting, non-inverting and differential amplifiers-CMI ter coupled differential amplifier, active load, level shi acteristics-open-loop input output characteristics, frequer applications-adder, subtractor, integrator, differentia averter, current-to-voltage converter and logarithmic ampl	fting ncy re tor,	Dp-A and espon	mp outp se a	IC out nd
Unit:3		Basic Devices		11	2 ho	
Bipolar Junc Transistor (JJ Semiconduct	FET), M or Junc	nsistor (BJT) – Field Effect Transistor (FET) - Junct tetal Oxide Semiconductor Field Effect Transistor (MOS tion Field Effect Transistor (MESFET): Structure, and its Applications.	SFET	Field) and	Effe Met	ect tal
Unit:4		Advanced Devices		12	hou	rs
Applications Switches - P (LED) - Pri	- PIN IN Diod nciple,	vices (Gunn Diode) – Principle, Working, I-V Character Diode: Structure, Working, - PIN Diode Parameters le as Limiters - Photo Detectors – Photo Diode - Light Construction, Working and Characteristics – Laser - n – Population Inversion – Semiconductor and Diode Lase	- PIN t Emi Abso	N Die tting	ode Dio	as de

	nit:5	Digital Principles	12 hours
M	aster S	ave, J.K, Edge Triggered JK and D-Type Flip Flops - Set up, Hold	and Propagation
De	elay Ti	nes - Shift Registers - Counters - Ring Counter - Up Down Counter	- Synchronous
Co	ounters		
	nit:6	Contemporary Issues	2 hours
Ex	pert lec	tures, online seminars– webinars	
		Total Lecture hours	62 hours
Bo	ok (s)	For Study	
1		ated Electronics – Jacob Millman and C. Hal Kias, Tat McGraw Hi	ll Publishing Co.
	(1971)		-
2	Basic	Electronics (Solid State), B.L. Theraja, S. CHAND (2006).	
3	Micro	waves, M.L. Sisodia, V.L. Gupta, New Age International (2001).	
4	Semic	onductor Devices, Kanaan Kano, Prentice Hall of India Pvt. Ltd. (1997)
5	Mode	n Physics, R. Murugeshan, Ninth Edition (2003).	
6	Digita	Computer Fundamentals, Thomas C. Bartee, Tata Mc Graw Hill (201	1)
7	Optica	l Electronics, Ajoy Ghatak and K. Thyagarajan, Cambridge University	Press (1998)
8	<u> </u>	Circuits and Microprocessors, Herbert Taub, McGraw Hill (1982).	
9		look of Electronics, S. Chattopadhyay, New Central Book Agency Pvt.	Ltd., Kolkata,
	2006	See Can	
Bo	ok (s) :	For Reference	
1	-	cs of Semiconductor Devices, S. M. Sze and Kwok K. Ng, Wiley I on (2007).	nterscience, 3rd
2	Intro	duction to Semiconductor Devices, M.S. Tyagi, John Wiley & Sons (20	03).
3	Meas	urement Instrumentation and Experimental Design in Physics and I	Engineering, M.
	Save	and A. Man Singh, Prentice Hall, India (2000).	
Re		Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1		://nptel.ac.in/courses/108/108/108108122/	
2	-	://nptel.ac.in/courses/108/108/108108111/	
3	•	://nptel.ac.in/courses/108/106/108106069/	
4	https	://nptel.ac.in/courses/108/105/108105132/	
~			
Cou	Irse De	signed By Dr N. Ponpandian e-mail ponpandian@	buc.edu.in

Mappi	ng with	Program	mme O	utcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	L	L	М	L	L	L	L	S
CO2	S	S	М	М	М	L	L	L	Μ	S
CO3	S	S	М	М	S	L	L	L	S	S
CO4	S	S	S	М	М	L	Μ	М	Μ	М
CO5	S	S	S	М	М	L	Μ	М	Μ	М
S	Stro	ong		Μ	Medi	um		L		Low

											C
Core		-	IN		$\mathbf{L} = \mathbf{I}$			0	0	4	4
Pre-requisite			knowledge an stry and biolo		standing	in phys	ics,	Sylla Vers		2020 202	
Course Objec	tives:		•								
	e student		ne concepts ir non topics in								
Expected Cou	rse Out	comes.									
On the succes			f the course,	student	will be a	ble to:					
	ctical kn	1	by applying				ds to co	rrelate	with	K4	1
	•	of various	measuremen	ts.						K2	2
3 Apply th	e analyti	cal techn	iques and grag	phical a	nalysis to	the ex	perimen	tal data		Ka	3
4 Apply th	e various	s procedu	res and techn	iques fo	or the exp	eriment	S.			K4	1
		tual com s in a gro	munication soup.	skills a	nd discu	ss the	basic p	rinciple	s of	K 2	ł
K1 – Rememt	oer; K2 –	Understa	nd; K3– App l	ly; K4-	Analyze:	; K5 – E	valuate;	K6 – Ci	reate		
				Practic	हे al						
1 Study	the forwa	ard and re	everse charact	teristics	of a Zen	er diode	•				
			acid base, col								
⁵ Dilut	ion		ies (i) Spread								
-An	ıp.		subtractor, di		ator and i	integrat	or circui	ts using	the g	iven (OP
			on by using E								
			e and Genera			~	<i>a</i>				
			e FET amplif of acid-base		Commo	n Sourc	e config	uration			
-			teria – Gram		a and						
9	nology (· · ·	ngi - Lacto P		0	ie Mou	nt				
			vity and temp					of a sen	niconc	luctor	•
			anilide from	Acetani	lide.						
	_	Carbohy									
13 Deter meth		n of charg	ge type and ca	rrier co	ncentrati	on in a	given na	nofilms	using	, hall	
14 Prepa	aration of	f tribromo	paniline from	Aniline	¢						
15 Bloo	d Groupi	ng and R	h Compatibil	ity							
Course Deel	a d D	N D-	nondio-		a				du te		
Course Design	еа ву	IN. PON	pandian		e-mail	poni	npandiar	<u>i@buc.</u>	<u>:au.111</u>		

	Mapping with Programme Outcomes												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	М	Μ	L	S	S	М	S	Μ	S			
CO2	S	М	М	L	S	Μ	S	L	Μ	S			
CO3	S	М	М	L	S	S	S	М	Μ	S			
CO4	S	М	М	L	S	Μ	Μ	S	Μ	S			
CO5	S	М	М	L	S	S	Μ	М	Μ	S			
S	Stro	ong		Μ	Medi	um		L	1	Low			

	23A	SYNTHESIS OF NANOMATERIALS	L	Т	Р	С
Core	STATILISIS OF TATAONATLENALS	4	0	0	4	
Pre-requisite			Sylla Vers			20 - 021
Course Object	ives:					
 To unders To tune th To apply 	stand the ne morph basic knows stand the	own and bottom-up approach of preparing nanomaterials. physical, chemical and biological approaches of nanomaterials ology and functional properties by tuning the preparation powledge of synthesis to prepare functional and smart material lithographic process for the fabrication of nanodevices.	parar	neter		S
*		upletion of the course, student will be able to:				
- 1		naterials using physical, chemical and biological approach	es			K2
		shape of the nanomaterials for diverse applications				K4
		inctionalization of nanoparticles for specific applications				K5
4 Form the	nanocoi	nposites for tuning their functional properties.				K5
		ice structures using lithographic techniques.				K6
K1– Rememb	er; K2–	Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6	– Cre	eate		
Sonochemica	l Synthe	by reduction <u>Solvothermal</u> synthesis Photochesis-Reverse micelles and microemulsions- Combustion por deposition(CVD)-Metal organic chemical vapor depo	n me	thod-		-
Unit:2		Physical Methods				hours
	LD)–DC	t gas condensation technique(IGCT)–Thermal evapor /RF magnetron sputtering – Molecular beam epitaxy (M	(BE)-	-Melt	spi	nning
process -IC		ion process– Microlithography– Etching – Wet cleaning er deposition (ALD).	ng– (Du	ckend
process –IC process – Ato Unit:3	omic laye	er deposition (ALD). Biological Synthesis			12	hours
process –IC process – Ato Unit:3 Introduction- Nanostructur Template na	Natural es and s nostructu uid – Cr	Biological Synthesis nanocomposite materials – Biologically synthesiz synthetic nanocomposites– Protein based nanostructure ure formation- Protein assembly – Biologically inspired ystal templating – Liquid crystal templating of thin films -	zed forn d na	nanc natior nocoi	12 ppart n – mpos	hours icles- DNA sites–
process –IC process – Ato Unit:3 Introduction- Nanostructur Template na Lyotropic liq	Natural es and s nostructu uid – Cr	Biological Synthesis nanocomposite materials – Biologically synthesiz synthetic nanocomposites– Protein based nanostructure ure formation- Protein assembly – Biologically inspired ystal templating – Liquid crystal templating of thin films -	zed forn d na	nanc natior nocor ock c	12 ppart n – mpos	hours icles- DNA sites- lymer

Un	it:5	Ca	rbon Based Na	anomaterials		12 hours
Sy	nthesis of	one-, Two-, Three-	, and Zero- d	limension Nanc	structure and A ca	ise study –
Ca	rbon nanos	tructure tuning the	size and shape	to enhance the	functional properti	es for their
po	tential App	ications.				
Un	it:6		Contempor	ary Issues		2 hours
Ex	pert lecture	, online seminars – v	vebinars			
				T	otal Lecture hours	62 hours
	ok (s) for S	· ·				
1		n the Liquid-phase s henko, Charles J. O'			cles, Brain L. Cushi 3893-3946.	ng, Vladimi
2		ls: Synthesis, Prope pringer, (2007).	rties and Appli	cations, C. N. I	R. Rao, P. J. Thoma	as and G. U
3	Nanotechn (2008).	ology – Enabled Se	nsors, Kourosh	Kalantar – zac	leh and Benjamin F	ry, Springer
4	Nanostruct College Pr		s: Synthesis, Pr	operties & Appl	ications, Guozhong (Gao, Imperia
5		stry: A Chemical UK, (2005).	Approach to	Nanomaterials	-Royal Society of	Chemistry
			ைக்கமக			
Bo	ok (s) for R	eference	jenerol la	Call		
1		osite science and tech TH Verlag, Weiheim.		el M. Ajayan, Li	nda S. Schadler, Pau	l V. Braun,
2		ia of Materials Char tterworth - Heinema			e, Charles A. Evans J	r., Shaun
3		of Microscopy for N Press, (2005).	anotechnology	, Ed. By Nan Ya	o and Zhong Lin Wa	ng, Kluwer
4	Nanochem	stry, G.B. Sergeev, H	Elsevier, (2006)	•		
Re	lated Online	Contents [MOOC, S	WAYAM NP	TEL. Websites e	tc]	
1		l.ac.in/courses/118/1			1	
2	I	l.ac.in/courses/118/1				
3		l.ac.in/content/syllab				
Co	urse Desigr	ed By Dr N. Por	mandian	e-mail	ponpandian@buc.	edu in
	urse Desigi		ipanuian	€-man	ponpanutan@buc.	Cuu.III

Mappin	Mapping with Programme Outcomes												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	S	S	S	S	S	Μ	S	S	S			
CO2	S	S	Μ	L	S	S	Μ	S	S	S			
CO3	S	S	Μ	Μ	S	Μ	L	Μ	S	S			
CO4	S	S	S	S	S	S	Μ	S	S	S			
CO5	S	S	S	S	S	S	Μ	Μ	S	S			
S	S Strong M Medium L Low												

Course code	23B		L	Т	Р	С
Core	230	CHARACTERIZATION OF NANO MATERIALS	4	0	0	4
Pre-requisite		Basic knowledge in science (Physics, Chemistry, and Biology)	Sylla Vers	bus	202 20	20 -
Course Objectiv	ves:			-	-	
characteriz 2. To apply magnetic a	ation for the and elect	dents to understand the fundamental principles, concepts analysis of structure, optical, mechanical, chemical trical properties of the materials. oply for designing of new materials with multifunctional	com	positi		
Expected Cours	e Outco	mes.				
		upletion of the course, student will be able to:				
		Fundamental concepts and techniques used in material techniques.				K2
		tural and morphological techniques to confirms the phas of materials.	es and	1		K3
		ctional properties such as electrical, magnetic, mechanicate of materials.	al, opt	tical		K4
4 Nuclear material	-	copic techniques to identify the chemical environment o	of the			K5
5 Surface the mate		rization techniques to analyze composition and stoichion	netry	of		K5
K1 - Rememb	er; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Create	;	
	1	Combain-				
Unit:1	1:00	Structural Characterization		0		nours
— Stylus prof		cometer - Synchrotron radiation – FTIR spectrometer - F r.	kamar	i Spec	ctrom	eter -
Unit:2		Microscopic and Surface Analysis			121	nours
(TEM); Scan	ning Pr	: scanning electron microscope (SEM) – transmission obe Microscopy: atomic force microscope (AFM) – ser confocal microscope – Brunauer – Emmer – Teller S	scan	ning	tunne	elling
Unit:3		Spectroscopy			121	nours
X-ray photoel	scopy	pectroscopy (XPS) – EDAX and WDA - Mass Spectrsc (SIMS) –ICPMS - Nuclear magnetic resonance (NM			ondar	y Ion
Unit:4		Electrical, Mechanical and Magnetic Properties		1	2 hou	ırs
		opy – Electro analytical Techniques: Potentiometry – C	•	Volt	amme	etry -
1 1		Measurement System (PPMS) –Nanoindentation –	• 10		0	Ĩ
Physical Pro		Thermal and Optical Properties				nours

(TC	G/DTA) – UV – Vis	sible spectrophotometer –	Spectroflouromete	er – Contact angle	e measurement.
Dy	namic Light Scatter	ing (DLS)			
Uni	t:6	Contempo	ary Issues		2 hours
		seminars – webinars			2 110013
DAL	bert rectures, onnie	semmars weemars			
			Total	Lecture hours	62 hours
Boo	ok (s) for Study				
1	Encyclopedia of N	Aterials Characterization		dle, Charles A. I	Evans Jr., Shaun
		th-Heinemann Publishers			
2	Handbook of Mici Academic Press, (2	oscopy for Nanotechnolo 2005).	gy, Ed. By Nan Y	ao and Zhong Lii	n Wang, Kluwer
3	Nanostructures & Imperial College F	Nanomaterials: Synthe Press, (2004).	sis, Properties &	Applications,	Guozhong Gao,
4		Enabled Sensors, Kou	rosh Kalantar-zado	eh and Benjami	n Fry, Springer
5		. B. Sergeev, Elsevier, (20	006).		
Bool	(s) for Reference				
1		Basic Science and Er f Smith, Michelle Simmo		-	
2	Nanocomposite Sc	ience and Technology, P g, Weinheim, (2003).			
3	Introduction to Na	noscience, S. <mark>M. Linds</mark> ay	1st Edition, Oxfor	d University Pres	ss, (2010).
Rel	ated Online Conten	ts [MOOC, SWAYAM, N	PTEL, Websites e	tc.]	
1		courses/118/104/1181040			
2	https://nptel.ac.in/	courses/113/107/1131070	81/		
3	https://www.classo	central.com/course/swaya	m-structural-analys	sis-of-nanomateri	als-14310
Cour	se Designed By	Dr N. Ponpandian	e-mail	ponpandian@b	ouc.edu.in

Mappii	ng with I	Program	me Outo	comes									
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	Μ	S	S	М	S	S	S	S	S	S			
CO2	Μ	S	S	М	S	S	S	S	S	S			
CO3	Μ	S	S	L	S	S	М	S	Μ	S			
CO4	Μ	S	S	М	S	S	М	S	Μ	S			
CO5	Μ	S	S	М	S	S	М	S	S	S			
S	Stro	ong		М	Mediu	um		L		Low			

	e Code 23C MICRO AND NANOFABRICATIONS L								
Core			4	0	0	4			
Pre-requisite		Basic understanding in Materials Science	Sylla Vers		2020 202				
Course Objec	tives:								
		lean room standards and other aspects on process integra							
		ous techniques involved in nanostructuring MEMS/NEM							
		e process of nano manipulation and analyzing it by	vario	ous i	magi	ng			
techniques.			11						
		undamentals of mems design, application and future chal	U						
Expected Cou		undamentals of NEMS design, application and future cha	anenge	28.					
<u> </u>		appletion of the course, student will be able to:							
1		get a basic understanding on clean room standards and p	rocos	,	K2				
integratio		get a basic understanding on clean room standards and p	100055	,	κ2				
0		demonstrate an understanding on nanostructuring by v	various		K2,K	6			
lithograp		° °	unou	,	112,1				
		be able to image and inspect nanostructured materi	als by	r	K2,k	(4			
		onal and advanced techniques.			,				
4 The stude	ent will u	understand the MEMS techniques, application and its fut	ure		K4,K	5			
5 The stude	ent will u	understand the NEMS techniques, application and its futu	ure		K4,K	5			
					K4,K5				
K1 - Rememb	oer; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Creat	e				
K1 - Rememb	ber; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Creat	e				
Unit:1		Clean Room and Process Integration		12	hou	Irs			
Unit:1 Clean Room Aspects – C Oxide Isolat	s: Clean Dxidation		nt Safe ration: Substra	12 ty an Junc	hou d He	alth			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp	s: Clean Dxidation	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen – Ion Implantation – Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Phmic Contacts – Alloyed Contacts – Multi level Metalliz	nt Safe ration: Substra	12 ty an Junc ites -	hou d He tion Scho	alth anc ttky			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2	s: Clean xidation ion – L lanted C	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen – Ion Implantation – Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Ohmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques	nt Safe ration: Substra cation.	12 ty an Junc ites - 12	hou d He tion Scho hou	alth anc ttky			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction–	s: Clean Dxidation ion – L lanted C	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen – Ion Implantation – Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Phmic Contacts – Alloyed Contacts – Multi level Metalliz	nt Safe ration: Substra ation. y – El	12 ty an Junc ites - 12 ectro	hou d He tion Scho hou n bea	u <mark>rs</mark> alth and ttky			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X	s: Clean Dxidation ion – L lanted C Lithogra K – ray 1	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Ohmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph	nt Safe ration: Substra ration. y – El utral a	12 ty an Junc ttes - 12 ectro ttomi	hou d He tion Scho hou n bea c bea	urs alth and ttky urs um			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X lithography	s: Clean Dxidation ion – L Danted C Lithogra Lithogra – ray 1 – Nano	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S <u>Ohmic Contacts – Alloyed Contacts – Multi level Metalliz</u> <u>Nanostructuring By Physical Techniques</u> aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne	nt Safe ration: Substra ration. y – El utral a	12 ty an Junc ttes - 12 ectro ttomi	hou d He tion Scho hou n bea c bea	urs alth and ttky urs um			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-2 lithography Nanoparticles	s: Clean Dxidation ion – L Danted C Lithogra Lithogra – ray 1 – Nano	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Dhmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication.	nt Safe ration: Substra ration. y – El utral a	12 ty an Junc ttes - 12 ectro ttomi ssem	hou d He tion Scho hou n bea c bea bly	urs alth and ttky urs um um of			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X lithography Nanoparticles Unit:3	s: Clean Dxidation ion – L Ianted C Lithogra K – ray 1 – Nano s and nar	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Dhmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing	t Safe ration: Substra ation. y – El utral a uy– A	12 ty an Junc ttes - 12 ectro ttomi ssem	hou d He stion Scho hou n bea c bea bly hou	urs alth and ttky urs um of			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, I	s: Clean Dxidation ion – L Ianted C Lithogra K – ray 1 – Nano s and nar naeling tical mic	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Dhmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication.	t Safe ration: Substra ation. y – El utral a uy– A FM) – ssing a of –M	12 ty an Junc ttes - 12 ectro ttomi ssem 12 - Ne and icro	hou d He stion Scho hou n bea c bea bly hou ar-fie surfa conta	urs altl and ttky urs um of urs eld ce act			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, 1 printing– Mo	s: Clean Dxidation ion – L Ianted C Lithogra K – ray 1 – Nano s and nar nneling tical mic Dimensio Iding – i	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Dhmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing microscopy (STM) – Atomic force microscopy (AF croscopy (NSOM) – Advanced Techniques: Embos onal Subtraction and Addition, Multistep Processing, of mplications and applications of the conventional and adv MEMS Techniques and Application	t Safe ration: Substra ation. y – El utral a ny– A TM) – Sing a of –M vanced	12 ty an Junc ites - 12 ectro itomi ssem 12 - Ne and icro icro itech	hou d He stion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou	urs alti and ttk: urs um of urs eld ce act es.			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-2 lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, 1 printing– Mo Unit:4 MEMS mate	s: Clean Dxidation ion – L Danted C Lithogra K – ray 1 – Nano s and nar nneling tical mic Dimensio Iding – i	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating Somic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing microscopy (STM) – Atomic force microscopy (All croscopy (NSOM) – Advanced Techniques: Emboss onal Subtraction and Addition, Multistep Processing, of mplications and applications of the conventional and adv MEMS Techniques and Application EMS challenges - scaling - scaling in geometry, rigit	t Safe ration: Substra zation. y – El utral a uy – A y – FM) – sing z of –M vanced	12ty anJuncites -12ectroitomissem12- Neandicro <td>hou d He tion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou</td> <td>urs altl and ttky urs um of urs eld ce act es.</td>	hou d He tion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou	urs altl and ttky urs um of urs eld ce act es.			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-X lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, I printing- Mo Unit:4 MEMS mate electrostatic f	s: Clean Dxidation ion – L Danted C Lithogra Lithogra A – ray 1 – Nano s and nar naling tical mic Dimensio Iding – i forces, el	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating Solution Demostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing microscopy (STM) – Atomic force microscopy (AF croscopy (NSOM) – Advanced Techniques: Emboss onal Subtraction and Addition, Multistep Processing, of mplications and applications of the conventional and adv MEMS Techniques and Application EMS challenges - scaling - scaling in geometry, rigid lectromagnetic forces, electricity, fluid mechanics, heat	t Safe ration: Substra ation. y – El utral a y – A y – A TM) – Ssing a of –M vanced d body transfe	12 ty an Junc ttes - 12 ectro tomi ssem 12 ectro tomi ssem 12 - Ne and icro tech icro	hou d He stion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou namie	urs alti and ttky urs um of urs eld ce act es. urs cs, for			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-2 lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, 1 printing- Mo Unit:4 MEMS mate electrostatic for MEMS-MEM	s: Clean Dxidation ion – L Danted C Lithogra K – ray 1 – Nano s and nar nneling tical mic Dimensic Iding – i Forces, ef forces, ef S featu	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating S Dhmic Contacts – Alloyed Contacts – Multi level Metalliz Nanostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithography ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing microscopy (STM) – Atomic force microscopy (All croscopy (NSOM) – Advanced Techniques: Embos onal Subtraction and Addition, Multistep Processing, of mplications and applications of the conventional and adv MEMS Techniques and Application EMS challenges - scaling - scaling in geometry, rigid lectromagnetic forces, electricity, fluid mechanics, heat ures-MEMS design limits and safety factors - M	t Safe ration: Substra ation. y – El utral a y – A y – A TM) – Ssing a of –M vanced d body transfe	12 ty an Junc ttes - 12 ectro tomi ssem 12 ectro tomi ssem 12 - Ne and icro tech icro	hou d He stion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou namie	urs alti and ttky urs um of urs eld ce act es. urs cs, for			
Unit:1 Clean Room Aspects – C Oxide Isolat contacts Imp Unit:2 Introduction- lithography-2 lithography Nanoparticles Unit:3 Scanning tur scanning op passivation, 1 printing- Mo Unit:4 MEMS mate electrostatic for MEMS-MEM	s: Clean Dxidation ion – L Danted C Lithogra K – ray 1 – Nano s and nar nneling tical mic Dimensic Iding – i Forces, ef forces, ef S featu	Clean Room and Process Integration room Standards – Clean room sub-systems – Environmen — Ion Implantation — Etching- Diffusion Process Integr OCOS methods – Trench Isolation – Semi Insulating Solution Demostructuring By Physical Techniques aphy–Photolithography – Phase-shifting photolithograph ithography – Focused ion beam (FIB) lithography – Ne manipulation and nanolithography– Soft Lithograph nowires - Other methods for microfabrication. Nanomanipulation and Processing microscopy (STM) – Atomic force microscopy (AF croscopy (NSOM) – Advanced Techniques: Emboss onal Subtraction and Addition, Multistep Processing, of mplications and applications of the conventional and adv MEMS Techniques and Application EMS challenges - scaling - scaling in geometry, rigid lectromagnetic forces, electricity, fluid mechanics, heat	t Safe ration: Substra ation. y – El utral a y – A y – A TM) – Ssing a of –M vanced d body transfe	12 ty an Junc ttes - 12 ectro tomi ssem 12 ectro tomi ssem 12 - Ne and icro tech icro	hou d He stion Scho hou n bea c bea bly hou ar-fie surfa conta nique hou namie	urs altiland ttky urs um of urs eld ce act es. urs cs, for			

Introduction to NEMS and its architecture - carbon nanotube electronics - modeling - analysis and simulation - simulation of Actuators, FET, Pressure transducer - applications and future challenges.

T 7	•• <								T			
	nit:6	1.			•			-	y Issues			2 hours
Ex	pert lecture	s, onli	ine	e sei	mina	rs - w	ebinar	S				
									Т	4 1 T 4		
									10	otal Lecti	ure hours	62 hours
Bo	ook (s) for S											
1							•		Propertie	s Applica	tions, Guoz	zhong Cao, World
	Scientific											
2			, F	Prin	ciple	s, Cap	abiliti	es and	Limits,	Zheng C	ui, Springer	Science business
	media, (20											
3				-	stem	s, Dev	vices ar	nd Stru	ctures ^I , S	Syergey E	dward Lysh	evski, CRC Press,
	New York		- <u>(</u>									
4						-						aw Hill, (2002).
5			lec	char	nical	Syster	n Desi	ign, Jar	nes J All	en, CRC	Press-Taylo	or & Francisl, New
	York, (200	/										
6						-	nthasu	resh G	. K, Vino	оу. К.J, С	Gopalakrishr	nan.S, Wiley India
	Pvt Ltd, N	ew De	elh	i, (2	2012).						
								and Block	<u> </u>			
Bo	ook (s) for l	lefere	eno	ce			1608560		Central I			
1	Foundation	s of I	ME	EMS	S, Ch	ang L	iu, Pea	arson eq	ducation	India lim	ited, (2006).	•
2	MEMS, M	ahalik	K N	νP,	Tata	McG	raw-H	ill Edu	cation, (2	2008).		
3	Marc. J, M	adou,	, "ł	Fun	dame	entals	of Mic	rofabri	cation: T	he Scien	ce of Miniat	urization",
	CRC Press	, (200)2)			E.	TRAN		ERST 3			
							Picifis is an	Coimbatore	+ BL Galer			
Re	elated Onli	e Co	nt	ent	5 [M	00C,	SWA	YAM,	NPTEL	, Website	es etc.]	
1	https://np	tel.ac	.in	/coi	ırses	/117/1	05/11'	710508	32/			
2	http://cite	seerx	.ist	t.ps	u.edı	ı/view	doc/do	ownloa	d?doi=10).1.1.111.	3275&rep=1	rep1&type=pdf
												<u> </u>
Cou	urse Design	d By		Dr	C. V	iswan	athan		e-mail		viswanat	han@buc.edu.in

Mappi	ng with	Program	mme Ou	utcomes								
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	Μ	Μ	L	Μ	S	S	L	L	L	М		
CO2	S	S	S	S	S	Μ	Μ	L	S	S		
CO3	S	S	S	Μ	S	S	М	L	S	S		
CO4	S	S	Μ	S	М	L	S	S	S	S		
CO5	S	S	Μ	S	М	L	S	S	S	S		
S	Stro	ong		Μ	Medi	um		L		Low		

Course code 23D Core	23D	GENETICS AND NANOBIOTECHNOLOGY	L	Т	Р	С
Core			4	0	0	4
Prerequisite		Basic knowledge on Biology and Nanotechnology	Sylla Vers		202 -202	
Course Objec						
2. Decipher	the knov	concepts of Molecular biology wledge on nanoparticle inaction with cell membrane be the nanoparticles inside the cell with developed technic	ques			
Expected Cou	rse Out	comes:				
		appletion of the course, student will be able to:				
		ntral dogma of cell survival			K	2
		rocess of transcription and its enzymology			K	2
	nd the co	oncept of triplet codon and its genetic importance in bring	ging u	р	K	2
4 Analyses	the proc	cess of nanoparticle internalization inside the cell the stru	ctures		K	4
5 Evaluate	the proc	ess and interactions of nanoparticles with in the cellular s	structu	ires	K	5
K1 - Rememb	ber; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6- (Create		
		AND AND ALD C				
TT •4 1						
replication, s and types o	emicons of mutag	Molecular Biology structure, structure and types of DNA – Double helix, servative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene	cess, 1 esis, 1	otides, mutag mutag	genes genes	A is
Chromosome replication, s and types of	emicons of mutag	structure, structure and types of DNA – Double helix, ervative replication, DNA polymerase, replication pro-	cess, 1 esis, 1	otides, mutag mutag	, DN genes genes	A is
Chromosome replication, s and types of techniques. D Unit:2	emicons f mutag NA repa	structure, structure and types of DNA – Double helix, ervative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr Transcription	cess, 1 esis, 1 natche	otides, mutag mutag ed rep 12	, DN genes genes air. hou	A is is
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, j	emicons f mutag NA repa nition, s prokaryc	structure, structure and types of DNA – Double helix, servative replication, DNA polymerase, replication progenesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr	cess, 1 esis, 1 matche f tran	otides, mutag mutag ed rep 12 script	, DN genes genes air. hou ion	A is is rs in
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, j	emicons f mutag NA repa nition, s prokaryc	structure, structure and types of DNA – Double helix, ervative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr <u>Transcription</u> structure of r-RNA, t-RNA and m-RNA. Initiation o tic RNA polymerase, prokaryotic promoters, elongation	cess, 1 esis, 1 matche f tran	otides, mutag mutag ed rep <u>12</u> script termi	, DN genes air. hou ion natio	A is is rs in on
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, p in prokaryote Unit:3 Protein synth termination, Prokaryotic a	emiconse of mutag NA repa nition, s prokaryce s, prokaryce s, prok	structure, structure and types of DNA – Double helix, servative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr Transcription structure of r-RNA, t-RNA and m-RNA. Initiation o tic RNA polymerase, prokaryotic promoters, elongatior yotic termination signals. Reverse transcription.	cess, matche	tides, mutag mutag ed rep 12 script termi 12 elong expre	, DN genes air. hou ion natio hou gatic	A is is rs in on rs n, n;
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, j in prokaryotes Unit:3 Protein synth termination, Prokaryotic a ribosome stru Unit:4	emiconse of mutag NA repa nition, s prokaryco s, prokaryco s, prok	structure, structure and types of DNA – Double helix, ervative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr Transcription structure of r-RNA, t-RNA and m-RNA. Initiation o otic RNA polymerase, prokaryotic promoters, elongation yotic termination signals. Reverse transcription. Translation anslation) - Basic mechanism of Protein synthesis: Initi Targeting, Folding, and Modification process - O aryotic gene expression, Regulation of gene expression NA repairing of Genetic code. Cell Membrane Interactions and Intracellular Trafficking of Nanoparticles in Cell	cess, 1 esis, 1 matche	otides, mutage mutage mutage mutage mutage script termi 12 elong expresentic 12 12 12 12 12 12 12 12 12 12 12	, DN genes air. hou ion nation gatic coc hou	A is is rs in on rs n, n: e, rs
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, p in prokaryotes Unit:3 Protein synth termination, Prokaryotic a ribosome stru Unit:4 Phagocytosis, /caveolae ind	emiconse of mutag NA repa nition, s prokaryce s, prokaryce s, prok	structure, structure and types of DNA – Double helix, servative replication, DNA polymerase, replication pro- genesis, difference between mutation and mutagene ir – base excision repair, nucleotide excision repair, misr Transcription structure of r-RNA, t-RNA and m-RNA. Initiation o tic RNA polymerase, prokaryotic promoters, elongation yotic termination signals. Reverse transcription. Translation anslation) - Basic mechanism of Protein synthesis: Initi Targeting, Folding, and Modification process - O aryotic gene expression, Regulation of gene expressio NA repairing of Genetic code. Cell Membrane Interactions and Intracellular	cess, 1 esis, 1 natche	otides, mutage script termi 12 elonge expro- enetic 12 sis, C	, DN genes genes air. hou ion natio gatic coo hou lathu	A is is rs in on rs n, n: e, rs in
Chromosome replication, s and types of techniques. D Unit:2 RNA – Defi prokaryotes, p in prokaryotes Unit:3 Protein synth termination, Prokaryotic a ribosome stru Unit:4 Phagocytosis, /caveolae ind	emiconse of mutag NA repa nition, s prokaryce s, prokaryce s, protein dependen ligi bodice	structure, structure and types of DNA – Double helix, servative replication, DNA polymerase, replication processes, difference between mutation and mutagenesis, difference between mutation and mutagenesis, ir – base excision repair, nucleotide excision repair, misr Transcription Structure of r-RNA, t-RNA and m-RNA. Initiation of tic RNA polymerase, prokaryotic promoters, elongation yotic termination signals. Reverse transcription. Translation anslation) - Basic mechanism of Protein synthesis: Initiation of gene expression, Regulation of gene expression of gene expression. Cell Membrane Interactions and Intracellular Trafficking of Nanoparticles in Cell n-mediated endocytosis (CME), Caveolae-dependent endot endocytosis, Macropinocytosis. Cell organelles 1	cess, 1 esis, 1 matche	otides, mutage script termi 12 elonge expro- enetic 12 sis, C	, DN genes genes air. hou ion inatio bou gatic coc hou lathn lasm	A is is rs in n, n: e, rs in ic

– PCR					
Unit:6		Contempora	ry Issues		2 hours
	ectures, onli	ne seminars – webinars	U.	L.	
				1	
			Total Lecture 	hours 6	52 hours
Book (s) for Study				
1 Mol (199		biology, Darnell, Lodish,	Baltimore, Scientific	American Boo	oks, Inc.,
2 Mic	robial Geneti	cs, Freifelder, D., 2nd Ed. N	arosa Publishing House.	, New Delhi, (20	006).
3 Han	dbook of Bio	medical Instrumentation –	R.S. Khandpur, Tata Mc	Graw Hill, (20	03).
Book (s	b) for Refere	nce			
	robiology, Pr Graw Hill, (2	escott L M, J P Harley and 005).	D A Klein, 6 th edition, I	nternational edi	tion,
	robial Geneti lishers, (1994	cs, Maloy, S.R., Cronan, J.I	E. Jr. and Freifelider, D.	2 nd Ed. Jones an	d Bartlett
3 Mol	ecular cell bi	ology, Darnell, Lodish, Bal	timore, Scientific Ameri	can Books, Inc.	, (1994).
4 Pric	inciples of G	ene Manipulation, Primrose	. S.B., Twyman R.M., C	Old. R.W. Black	well
Scie	nce Limited,	(2001).			
		jana and a line	SLO, Can		
Related	Online Cor	tents [MOOC, SWAYAM	I, NPTEL, Websites etc	c.]	
		/10.3762%2Fbjnano.11.25		-	
		i.nlm.nih.gov/books/NBK1	0779/		
-		/courses/102/107/1021070			
4 http	s://nptel.ac.ii	/courses/118/106/1181060	19/		
		்குந்தப்பாரை Ebucate to ELE	NATE NATE		
Course D	Designed By	Dr P. Premasudha	e-mail <u>prem</u>	nasudha@buc.eo	<u>du.in</u>

Mappi	Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	L	Μ	L	S	S	L	S	S	S	
CO2	Μ	S	L	Μ	М	Μ	М	L	S	S	
CO3	S	S	L	L	М	S	S	S	S	S	
CO4	S	М	М	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	
S	Strong			Μ	Medi	um		L		Low	

Course code	2EA	NANOELECTRONICS AND	L	Т	Р	С	
Electiv	e	NANOPHOTONICS	4	0	0	4	
Pre-requisite		Basic Physics Concepts Syllab Versio					
Course Object	tives:						
 The rapid microelec impart qu electronic It provide circuits, a 	growth tronics p ality edu s and des s an ad foundati	this course are to: of the integrated circuit (IC) industry has led to the en process engineering as a new advanced discipline. Thus, acation at a sufficiently advanced level in the current sign discipline. vanced level vast understanding to the device electron for the device fabrication and various application in the ectronics, communication and nanotechnology etc.	there state ics f	is a of a or in	neec rt Na tegra	d to ano ated	
Expected Cou		comes: pletion of the course, student will be able to:					
	an appre	ciation for the conceptual foundations underlying the ope	ration	n of	K	K 4	
2 Understa	nd the di	verse electronic device fabrication.			K	K2	
the acade	mic and	nding of engineering concepts and demonstrate application industrial jobs.		-	K	ζ6	
		ally with indu <mark>stry both within and</mark> outside of a classroom		-	K	Κ6	
5 Develop	an appre	ciation of continuing educational and professional develop	pmen	nt.	K	Κ6	
K1 - Rememb	er; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	X6 - C	Create	•		
		3. Bis Bis succession and the second					
Unit:1		Basics of Nanoelectronics		12	hou	rs	
and flux – El	ectrons b	ls: Electromagnetic fields and photons – Quantization of behaving as waves (Schrodinger equation) – Electrons in ith electrons in solids – Diffusion process - Quantum Con	poter	ntial		-	
Unit:2		Quantum Electronics		12	hou	rs	
Quantum elec – Electrons i Electron way Quantum dot	n mesos e transi array –	evices - From classical to quantum physics -Upcoming e copic structure – Short channel MOS transistor – Split stor – Electron spin transistor – Quantum cellular aut - Principles of single electron transistor (SET) – SET FET and SET circuit design.	gate omat	onic c trans te (Q	levic istor CA)	es 	
Unit:3		Nanoelectronic Devices and Applications		12	hou	rs	
technology - Elementary c Memory devi introduction surface and b	RTD – C frcuits – ces and – Fe RA ulk acou	tunneling devices - Super conducting devices – Tu Circuit design based RTD –Defect tolerant circuits, Molec Flux quantum devices – Applications of super conducting sensors – Nano ferroelectrics - ferroelectric random act M circuit design – ferroelectric thin film properties an astic devices – gas-sensitive FETs – resistive semiconduc ntification of hazardous solvents and gases – semiconduct	ular o devi cess d int tor g	electr ices. memo egrat as sei	onic: ories ion - nsors	s -	

	it:4		Nanophot			12 hours
Ele	ectromagne	tic properti	ies of nanostructures – V	Wavelength and disper	sion laws	- Density of
sta	tes- Maxv	ell and He	elmholtz equations – Pl	hotonic Crystals – De	efinition a	nd types of
ph	otonic cry	stals - Pho	otonic band-structure and	l photonic band gap -	Propagatio	on of light in
			in zones - Band structure			
			tonic crystals by self-asse			
			nable properties.			
Un	it:5		Biophoto	onics		12 hours
In	teraction of	of Light wi	ith cells and tissues - N	Jature of optical intera	actions (op	tical loss and
			Optical properties of a ti			
			in tissues – Autofluoresc			
			nduced ablation and pho			
			s. Bioderived materials			
		-	bio-colloids) – Bioinsp	-		-
	ruses as ter	-	olo-colloida) – Diollist	Diot materials – Diot	unplates	(Daciena alle
• 1		ipiacs).				
Un	it:6		Contemporary	Issues		2 hours
		s. online se	eminars – webinars		I	
		<u>, on o</u>				
			கலைக்கழகம்	Total Lecture hour	rs	62 hours
Ro	ok (s) for S	Study	S a les .			
1			Nanosystems: from Trans	sistors to Molecular De	vices K G	oser P
1			uhl, Springer, (2004).	sistors to wholecular De	vices. R .0	0301, 1.
2			Information Technology:	Advanced Electronic N	Aaterials a	nd Novel
2			Rainer Waser (Ed.), Wil			
3			photonics, Sergey V. Gap			
5)-521-76375-2 (2010).	onenko, Camonuge Or	Inversity 11	C55, INCW
4	,			da) C Sibilia T M D	ancon M	Manainials T
4		• •	ysics and Technology, (E	us.) C. Sibilia, I. W. D	enson, M.	Marciniak, 1.
~	• • •		<u>88-470-0843-4) (2008).</u>	(I I W'I I C		
5		1	otonics, Paras N. Prasad,	(John Wiley and Sons,	, New Jerse	ey), ISBN: 0-
	471-28770	-9 (2003).				
Da	al. (a) fam 1) of one of a				
DU	ok (s) for l					
1			Electronics Handbook,	Edited by Sergey Ed	lward Lys	hevski, CRC
	Press, (200)7).				
Re	lated Onli	ne Content	ts [MOOC, SWAYAM,	NPTEL, Websites etc.	.1	
1			ourses/117/108/11710804	,	.]	
			courses/electrical-engine		$ence/6-70^{\circ}$	_
_			belectronics-spring-2010/			
2		ion to-nano	viewones spring-2010/	<u>104411158/101110_701010</u>	<u></u>	<u>_</u>
2			$\frac{118}{106} \frac{118}{106}$	1/		-
_			purses/118/106/11810602	<u>1/</u>		

Mappi	Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	М	S	S	М	М	S	S	S	
CO2	S	М	S	S	М	М	Μ	S	S	S	
CO3	S	М	S	М	S	S	S	S	S	S	
CO4	S	L	М	S	S	S	S	S	S	S	
CO5	S	М	S	Μ	М	S	S	S	S	S	
S	Strong			Μ	Medi	um		L		Low	

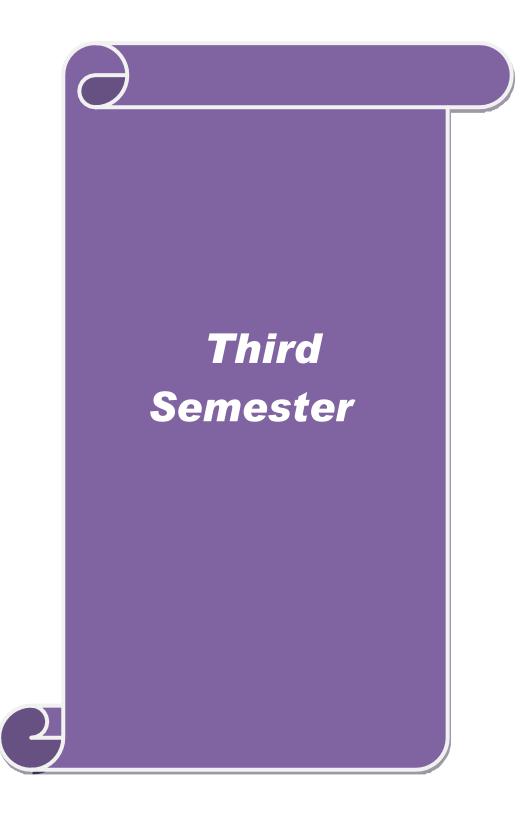
Course code	2EB	NANOMAGNETIC MATERIALS I	L T	Р	С			
Electiv	e	AND DEVICES 4	0	0	4			
Pre-requisite		Racic linderstanding in Physics	labus rsion	202 -20				
Course Objec	tives:	· · · · ·						
		this course are to:						
		e basic magnetic parameters and the importance of pro	perty	struc	ture			
		nining the absolute value of these parameters.						
		magneto-transport in nanoscale systems. vledge of basic mechanisms for tuning the magnetic propertie	NG.					
5. To provid		vieuge of basic mechanisms for tuning the magnetic propertie	-5					
Expected Cou	rse Out	comes.						
		upletion of the course, student will be able to:						
		mowledge in the concepts of magnetism at both micro	and		7.4			
nanoscal	-			ł	Κ4			
		edge in nanomagnetism and the advanced tools to study.		ŀ	K2			
	standing the various imaging techniques to study the magnetic behaviors.							
4 Identity propertie	tity the suitable applications of the magnetic materials based on the functional perties.							
	the knowledge to make various applications of nanomagnetic in data storage							
and biom					Κ6			
K1 - Rememl	oer; K2 -	- Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6-	- Creat	e				
	1							
Unit:1								
	ndament	Fundamental s of Magnetism als –Antiferromagnetic materials – Domains and the		<mark>2 hou</mark> tizati				
Magnetic fu process– Co anisotropy - Spin polarize	ercivity Induced d electro	Fundamental s of Magnetism tals –Antiferromagnetic materials – Domains and the of fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic on tunneling – Interlayer exchange coupling – Spin relaxatio nulti-layers - Nonequilibrium spin dynamics in laterally defi	magne – Ex multi-l n in m	tizati chan ayers agne	on Ige S – stic			
Magnetic fu process– Co anisotropy - Spin polarize metallic laye	ercivity Induced d electro	tals –Antiferromagnetic materials – Domains and the of fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic on tunneling – Interlayer exchange coupling – Spin relaxatio nulti-layers - Nonequilibrium spin dynamics in laterally defi	magne s – Ex multi-l n in m ined m	tizati chan ayers agne	on ige s – etic etic			
Magnetic fu process– Coanisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin cha Spin tunneli Electron Mic	annel more strengtheres and more strengthere	als –Antiferromagnetic materials – Domains and the of fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic on tunneling – Interlayer exchange coupling – Spin relaxatio	magne magne multi-l n in m ined m 12 12 14 12 14 14 14 14 14 14 14 14 14 14	tizati achan ayers agne agne 2 hou ronic missi chroi:	on ige s			
Magnetic fu process– Coo anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin cha Spin tunneli Electron Mic (XMLD) - X	annel more strengtheres and more strengthere	tals –Antiferromagnetic materials – Domains and the soft fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic for tunneling – Interlayer exchange coupling – Spin relaxation ulti-layers - Nonequilibrium spin dynamics in laterally defined to the terminal spin electronics – Three terminal spin udy of ferromagnetic and antiferromagnet interfaces – H - X-ray Absorption Spectroscopy - X-ray Magnetic Lineagnetic Circular Dichroism (XMCD) - Temperature depended	magne magne multi-l n in m ned m 12 n electr Photoe ear Did ence o	tizati achan ayers agne agne 2 hou ronic missi chroi:	on age s ttic ttic ars s s on s m cay			
Magnetic fu process- Co anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin ch Spin tunneli Electron Mic (XMLD) - X Magnetic Dic Unit:3	ercivity Induced d electro rs and m annel mo ng - Stu eroscopy f-ray Ma chroism	tals –Antiferromagnetic materials – Domains and the of fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic on tunneling – Interlayer exchange coupling – Spin relaxatio nulti-layers - Nonequilibrium spin dynamics in laterally define Nanomagnetism odel - Two terminal spin electronics – Three terminal spin udy of ferromagnetic and antiferromagnet interfaces – H - X-ray Absorption Spectroscopy - X-ray Magnetic Line	magne magne magne multi-l n in m ined m 12 12 Photoe car Dic car Dic car C	tizati achan ayers agne agne 2 hou ronic missi chrois f X-1 2 hou	on age s			
Magnetic fu process- Coo anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin cha Spin tunneli Electron Mic (XMLD) - X Magnetic Dic Unit:3 Molecular na nanomagnets	ercivity Induced d electro rs and m annel mo ng - Stu eroscopy f-ray Ma chroism anomagn – Fabri	Tails –Antiferromagnetic materials – Domains and the soft fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic for tunneling – Interlayer exchange coupling – Spin relaxation ulti-layers - Nonequilibrium spin dynamics in laterally defined and the spin dynamics in laterally defined and ferromagnetic and antiferromagnet interfaces – H - X-ray Absorption Spectroscopy - X-ray Magnetic Lineagnetic Circular Dichroism (XMCD) - Temperature depended for the spin dynamics in the spin dynamics in the spin dynamic dependence of the spin dynamic dynamic dependence of the spin dynamic dynamic dynamic dependence of the spin dynamic dyn	magne magne multi-l n in m ined m 12 12 12 12 12 12 12 12 12 12	tizati achan ayers agne agne 2 hou ronic missi chrois f X-1 2 hou netric iques	on age s – ttic ttic s – ton sm cay urs cal			
Magnetic fu process- Co anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin ch Spin tunneli Electron Mic (XMLD) - X Magnetic Dic Unit:3 Molecular na nanomagnets Imaging mag	ercivity Induced d electro rs and m annel mo ng - Stu eroscopy -ray Ma chroism anomagn – Fabri gnetic m	Fabrication and Imaging Fabrication and Imaging Fabrication and Imaging Fabrication and Imaging Manomagnetism - Particulate nanomagnetis – Section sector of the particulate sector of the particul	magne magne multi-l n in m ined m 12 12 12 12 12 12 12 12 12 12	tizati achan ayers agne agne 2 hou ronic missi chrois f X-1 2 hou netric iques	on age s – ttic ttic s – to s s s - aon s m cal s -			
Magnetic fu process– Co anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin ch Spin tunneli Electron Mic (XMLD) - X Magnetic Dic Unit:3 Molecular na nanomagnets Imaging mag Holography o	ercivity Induced d electro rs and m annel mo ng - Stu eroscopy -ray Ma chroism anomagn – Fabri gnetic m	tals -Antiferromagnetic materials – Domains and the solution of fine particles of fine particles – Super paramagnetism in fine particles anisotropy in thin films – Electron transport in magnetic magnetic on tunneling – Interlayer exchange coupling – Spin relaxation on tunneling – Interlayer exchange coupling – Spin relaxation onulti-layers - Nonequilibrium spin dynamics in laterally define Manomagnetism – odel - Two terminal spin electronics – Three terminal spin udy of ferromagnetic and antiferromagnet interfaces – H - X-ray Absorption Spectroscopy - X-ray Magnetic Line ognetic Circular Dichroism (XMCD) - Temperature depended Fabrication and Imaging ets – Mesoscopic magnetism - Particulate nanomagnets acation techniques scaling – Characterization using various acrospectroscopy – Optical Imaging – Lorentz Microscop etic Nanostructures – Magnetic Force Microscopy. –	magne magne multi-l n in m ined m 12 12 12 12 12 12 12 12 12 12	tizati achan agne agne agne 2 hou ronic missi chrois f X-1 2 hou netrivi iques	on age s			
Magnetic fu process- Co anisotropy - Spin polarize metallic laye structures. Unit:2 Two-spin ch Spin tunneli Electron Mic (XMLD) - X Magnetic Dic Unit:3 Molecular na nanomagnets Imaging mag Holography of	ercivity Induced d electro rs and m annel mo ng - Stu eroscopy -ray Ma chroism - Fabri gnetic m of Magne	Fabrication and Imaging Fabrication and Imaging Fabrication and Imaging Fabrication and Imaging Manomagnetism - Particulate nanomagnetis – Section sector of the particulate sector of the particul	magne magne in – Ex multi-l n in m ined m in	tizati achan agne agne agne 2 hou ronic missi chroit f X-1 2 hou netrio iques Electr	on age s			

transfer modes – Programmed I/O – Direct memory access – Ultra DMA – Data addressing – Standard CHS addressing – Extended CHS addressing – Logical Block Addressing – Magnetic recording- Principles of magnetic recording - Magnetic digital recording - Perpendicular recording - Magneto-Optic recording - Magnetic media – Kerr effect – Faraday effect.

Unit:5	Magnetic Structures and Application	12 hours
Magnetic sen	sors and Giant Magnetoresistance - Optically transparent materials	- Soft ferrites-
Nanocomposi	te magnets - Magnetic refrigerant - Ferro/biofluids- Biomedical	applications of
magnetic nar	oparticles - Diagnostic applications - Therapeutic applications -	Physiological
aspects - Toxi	c effects.	

Unit:6	Contemporary Issues	2 hours						
Expert lecture	Expert lectures, online seminars – webinars							

			,	Fotal Lecture ho	ours	62 hours			
Bo	ook (s) for S	Study							
1	Hans .P.O	, and Hopst	er. H, "Magnetic Microscop	y of Nanostructur	es", Sp	oringer, 2004.			
2	Bland. J.A.C, and B. Heinrich. B, "Ultra thin Magnetic Structures III – Fundamentals of								
	Nanomagr	netism", Spi	ringer, 2004.						
3	Nicola. A.S, "Magnetic Materials: Fundamentals and Device Applications", Cambridge								
	University Press, 2003.								
	is the second data by the								
Bo	ook (s) for l	Reference							
1	J. M. D. C	oey, Magne	etism and Magnetic Material	s, Pearson Educat	tion, 20	010.			
2	B. D. Cull	ity, C. D. (Graham, Introduction to Ma	gnetic Materials,	John '	Wiley & Sons, Inc,			
	2009.	-	To The West	2		-			
			Population and the second	alac					
Re	elated Onlin	ne Content	s [MOOC, SWAYAM, NP'	TEL, Websites e	tc.]				
1	https://w	ww.youtube	e.com/watch?v=QQZ6EGf01	lu8					
2	https://np	otel.ac.in/co	urses/115/106/115106061/						
3	https://np	tel.ac.in/co	urses/115/103/115103038/						
Co	ourse Design	ned By:	Dr. N. Ponpandian	e-mail	ponpa	andian@buc.edu.in			


Mappi	Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	Μ	S	S	М	Μ	S	S	S	
CO2	S	М	S	S	М	М	Μ	S	S	S	
CO3	S	М	S	Μ	S	S	S	S	S	S	
CO4	S	L	Μ	S	S	S	S	S	S	S	
CO5	S	М	S	Μ	М	S	S	S	S	S	
S	Strong			Μ	Medi	um		L		Low	

Course code	23P	PRACTICAL – II – SYNTHESIS AND CHARACTERZATION OF	L	Т	Р	С				
Core	:	NANAMATERIALS	0	0	4	4				
Pre-requisite			Sylla Vers		202 -202					
Course Objec	tives:									
meaning of specific phy physical tech basic proced	their size yco-chem hniques a lures for	the meaning of the "nano" in correlation to materials – the e in comparison to bulk materials, atoms and molecules. dical properties of nanomaterials and related applications. and chemical synthesis methods for the preparation of na surface functionalization and coating of nanomaterials. The methods for nanomaterials.	They The anon	y lear y lear nateri	n ab rn ba als,	out asic and				
Expected Cou	urse Out	romes:								
<u> </u>		pletion of the course, student will be able to:								
1 Understa	and the	meaning of the expression nanomaterials in comparison and molecules	to b	oulk	K	4				
synthesis	s of nano	on physical and chemical procedures for the fabrication materials			K	2				
related to	vledge of the characterization methods of nanomaterials, the limitations ed to their size and interpretation of the results									
nanomat	erials	basic surface functionalization and coating procedu			K	3				
		interparticle interactions and assembly of nanoparticles/materials	es i	nto						
		Combiner Contraction								
K1– Remem	ber; K2 –	Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6-	- Cr	eate						
		Practical								
1 Synthe	esis of Au	Ag nanoparticles using co-precipitation method,								
2 Synthe	esis of Co	IS nanoparticle using hydrothermal process.								
		O nanoparticles using sputtering process.								
		O ₂ nanoparticles using sol-gel process.								
		2O3nanofibres using electrospinning								
		WO ₃ nanostructures using microwave synthesis.								
-		e concentration of nanoparticles dispersed solution using U	V-vi	S						
spectro	oscopy.									
		borous alumina or anodized alumina template.		• •	T 7					
⁹ Visible	e transmi	cal band gap of the given semiconducting materials by me ssion spectrum.								
the X-	ray diffra	rage grain/crystallite size, unit cell parameters, microstrain action pattern of the given sample.	by 1	record	ling					
		omosomal DNA from microbes								
		nd Size Determination of nucleic acids and proteins –								
		Gel Electrophoresis and								
		AGE Electrophoresis								
13 Estima	ation of P	rotein – Bardford Method								

14	Separat	Separation Techniques: Chromatography (i) TLC and (ii) Column							
15	5 Antibiotic Susceptibility Test - Kirby Bauer Technique								
Cours	Course Designed By N. Ponpandian e-mail ponpandian@buc.edu.in								

Mappi	Mapping with Programme Outcomes													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	S	S	М	Μ	S	S	S	S	S	S				
CO2	S	S	L	L	S	S	S	S	S	S				
CO3	S	S	S	М	S	Μ	S	S	S	S				
CO4	S	S	S	S	S	L	S	S	S	S				
CO5	S	S	S	S	S	Μ	S	S	S	S				
S Strong M Medium L L							Low							

Course Code	33A		L	Т	Р	C				
Core		NANOTECHNOLOGY IN HEALTH SCIENCE	4	0	0	4				
Pre-requisite		This course requires basic knowledge in material Physics, Chemistry and Biotechnology to understand the diverse nature of nanomaterials and their applications.	nistry and Biotechnology to Syllabus 20 iverse nature of nanomaterials and Version -20							
Course Object	ives:									
application class room 2. Aim to cat science. 3. Aims to p medicine.	to heat through er stude provide	des over view of the distinctive features of nanotech lth science and technology. It includes active participa in-depth discussion sessions, presentation and a group p ents from different disciplines to understand the interdisc knowledge and recent development in nanotechnolog	tion roject ciplin	of stu ary n	iden ature	t in e of				
Expected Cour										
Ĩ		course the student should able to:			-					
		ncepts begin usage of nanomaterials in health science.			K	.3				
2 Describe s	structure	e and function of nanomaterials.			K	.3				
	3 Understand and account for the design strategies and nano-scale phenomenon nanomedicine									
4 Explain st	rategies	behind drug development and its mode of action			K	5				
5 Understan delivery	id and de	escribe the de <mark>sign and function of</mark> nano-carriers for drug	and g	ene	K	15				
	er; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	K6 - (Create	2					
Unit:1		Basics of Biomaterial Science		12	hou	rs				
ceramics, poly Biological-Mec Smart gels and	vmers a hanical-	1	ysica	l-Che ioma	emic teria	al- ls-				
Unit:2		Materials for Bone and Dentistry			hou					
orthopedics-Ort Bone stabilizers Dental material restorative mate	hopedic Artific s: Denta erials - l	ics: Structure and composition of bone- Conventior nanomaterials-Biological properties of bone grafts-Allo ial implant devices-Implant failure. al anatomy-Characteristics of oral environment - Classi Bonding agents-Principles of adhesion-Resins-Dental ce implant devices.	plasti ficatio	c ma	teria den	ls- tal				
Unit:3		Nanobiomaterials and Tissue Engineering		12	hou	rs				
cells-Scaffolds bladder reconstr substitutes-Con	for tiss ruction; structior	ineering-Hard and soft tissue engineering-Nanobiomate ue engineering-Materials-Fabrication techniques-Synthe Nanoparticles-Magnetic nano beats-Artificial skin; Comp n of small blood vessel; Production of retrovirus-Collag ast and genital implants. Basics of Nanomedicines	etic 1 posite	for an natric graft el sca	tific ces f ts-Sk	ial for tin ls-				
Concept of n nanomedicines- binding and u	transpor ptake c	icines-Rationale for designing of nanomedicines-Na et of nanoparticles across the biological barriers, para of nanoparticles-size, shape, surface charge, protein ranslation of nanomedicines: Preclinical and clinical of	amete coro	ructu rs af na, s	res fecti surfa	in ng ice				

nan	omedicines	-Regulation of nanomedicines.	
	nit:5	Regenerative Medicine	12 hours
		regenerative medicine-Methods of cell based therapy-Stem cells	
		of organ development-Therapeutic uses of stem cells-Molecular ba	
		rgans; Artificial pancreas-Lever-Ear-Heart-Ethics-Current issues	
		o market (Regenerative products).	I
	nit:6	Contemporary Issues	2 hours
Exp	ert lectures	, online seminars – webinars	
		Total Lecture hours	62 hours
Bo	ok(s) for S	tudy	
1	Biomateria	al science an introduction to materials in medicine, Buddy D. Ra	atner, Allans S.
		Frederick J. Schoen, Jack E. Lemons, 2004, ISBN: 0-12-582463-7.	
2	Biomecha	nics and Biomaterials in Orthopedics, Dominique G. Poitout, 2 nd ed	lition, Springer,
	,	N: 978-1-84882-663-2.	
3		Dental Biomaterials, Zohaib Khurshid Shariq Najeeb Muha	ammad Sohail
		hid Sefat, 1st edition, 2019, ISBN: 9780081024768.	
4		aterials in Hard Tissue Engineering, Alexandru Mihai Grumezes N: 9780323428620.	scu, Volume 4,
5	,	ls & Regenerative Medicine, Audet, Julie, Stanford, William	m L. Springer
5		ns, 2009, ISBN: 978-1-59745-060-7.	in 2, springer
6		gineering, second edition, Hansjorg Hauser, Martin Fussenegger	r, 2007, ISBN:
	978-81-84		, ,
7	Principles	of Regenerative Medicine, Anthony Atala, Robert Lanza, Tony Mi	kos, Robert
		edition, 2018, ISBN: 9780128098806.	
Bo	ok (s) for l	Reference	
1	Biomateria	als, Sujata V. Bhat, Alpha Science International, 2005, ISBN: 1842	652079.
2	Materials	for Biomedical Engineering: Nanobiomaterials in Tissue Engi	neering Kindle,
	Alina Mar	ia Holban, Alexandru Grumezescu, 1 st edition, 2019, ISBN: 01281	69095.
3	Basic De	ntal Materials, Manappallil John, 4th edition, 2016, ISBN: 10-9789	352500482.
4		aterials in Soft Tissue Engineering, Alexandru Mihai Grumezes	scu, Volume 4,
	,	0-323-42865-1.	
5		cal Nanomedicine Handbook, By Sara Brenner, CRC Press,	2017, ISBN:
	143983479		
6	Foundation 978012378	n of Regenerative Medicine, Anthony Atala, 1 rd edition, 35626.	2009, ISBN:
Re	lated Onlin	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1		w.mit.edu	
2	https://ch	almers.instructure.com	
3	https://ww	ww.mooc-list.com	
4	https://ww	ww.classcentral.com	
Cou			an@buc.edu.in

Mappi	Mapping with Programme Outcomes													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	М	S	L	S	S	М	L	S	S	М				
CO2	S	S	М	S	S	S	Μ	S	S	М				
CO3	S	S	М	Μ	S	М	S	S	Μ	S				
CO4	S	S	L	S	М	S	S	S	Μ	L				
CO5	S	М	М	Μ	S	S	S	S	S	М				
S	Stro	ong		Μ	Medi	um		L		Low				

Course code	33B	NANOTECHNOLOGY FOR ENERGY	L	Т	P	С				
Core		CONVERSION AND STORAGE DEVICES	NVERSION AND STORAGE DEVICES 4 0 0 s/Chemistry/Nanoscience/Allied							
Pre-requisite		Physics/Chemistry/Nanoscience/Allied chemistry/Applied Chemistry as a Major Subject During Graduate Programme.	NUIS //							
Course Object	tives:									
		basic concepts of energy systems								
		ental concepts of energy conversion systems								
	-	fferent energy storage methods								
4. Different	semicon	ducting materials introduced to the students								
Expected Cou	rse Out	comes:								
•		pletion of the course, student will be able to:								
1 Rememb	er the ba	sic concepts of energy conversion systems			K	1				
		king of fuel cells			K	3				
3 Understa	nd the pl	hotovoltaic cells			K	2				
	-	working of Solar cells			K	4				
5 Appraise	the oxid	les of semiconductor materials for green energy device			K	5				
		Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 – (Create	;					
	,									
Unit:1		Fundamental Concepts in Electrochemistry		12	hou	rs				
kinetics, Elec		- Polarization losses in electrochemical cells - Elect uble layer - Photoelectrochemical cell - thermoelectric ef			55 a.					
Unit:2		Energy Conversion Systems			hou					
Conversion S membrane fu	systems el cells	es of functional Nanostructured Materials for electrocl - Fuel Cells - Principles and nanomaterials design for; (PEMFC) - Direct methanol fuel cells (DMFC) - Soli us and future trends.	Proto	on exe	chan	ge				
Unit:3		Photovoltaic Systems		12	hou	rs				
photovoltaic Quantum dot	cells - (t (QD)	Oltaic energy conversion (PV) - Types of photovoltaic (Organic photovoltaic cell cells - thin-film Dye-Sensiti - Sensitized Solar Cells (QD-SSC) - Organic-Inorga SC) Solar cells - Current status and future trends.	zed S	olar (Cells	5 -				
Unit:4		Energy Storage System - Batteries		12 h						
and anode ma	aterials -	ces - Primary and Secondary Batteries (Lithium-ion Ba Nanostructured Carbon-based materials – Nano - Oxid Current status and future trends.								
Unit:5		Electrochemical Capacitors		12	hou	rs				
Capacitor - E materials des	ign - N	nemical supercapacitors - electrical double layer model anostructured Carbon-based materials - Redox capacito based materials- Current status and future trends.		incipl	es a	nd				

Unit:6			porary Issues		2 hours
Expert lectu	res, online s	eminars- webinars			
					(2.)
			Total L	ecture hours	62 hours
Book (s) f					
1 Allen Faulkn	Bard and . r, 2 nd Editio	Larry R Electroc n John Wiley & Sor	chemical methods: F as. Inc, (2004).	undamentals an	d Applications,
2 D. Line (2002).	en. Thoma	s B. Reddy, Handbo	ook of Batteries, 3 rd E	dition, McGraw-	Hill, New York,
			apacitors: Scientific H n publisher, New Yorl		d Technological
4 C. Bra	ec, V. Dya	konov, U. Scherf, (Organic Photovoltaics	: Materials, Dev	ice Physics, and
			n, Wiley VCH, (2014).		(2000)
J J. Lam	ine and A. I	Dicks, ruei Cell Sys	tem Explained, John V	viley, new 10rk	, (2000).
Book (s) f	r Referenc	e			
		nnology of Lithiu Academic Publishe	m Batteries-Material er, (2000).	s Aspects: An	Overview, A.
			Intercalation Chemist	ry, Academic Pr	ess, New York,
		amamoto, (Eds.) Li heim, (1998).	ithium Ion Batteries: I	Fundamentals and	d Performance,
		Super			
Related O	nline Conte	nts [MOOC, SWA	YAM, NPTEL, Web	sites etc.]	
	•	oc/courses/noc19/S			
		ourses/112/107/112			
3 <u>https://</u>	nptel.ac.in/c	ourses/102/107/102	107058/		
	I			1	
Course Des	gned By I	Dr P. Sakthivel	e-mail	sakthivel.p@b	ouc.edu.in

Mappi	ng with	Program	mme Ou	utcomes							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	М	М	Μ	М	L	S	L	S	S	
CO2	S	М	М	L	L	М	S	М	S	S	
CO3	S	L	М	L	S	М	S	М	S	S	
CO4	S	М	L	S	L	М	S	L	S	S	
CO5	S	М	М	S	S	М	S	S	S	S	
S	Stro	Strong M Medium L				Low					

[]				T	
Course code 33C	NANOSENSORS AND IoT BASED SENSORS	L	Т	P	С
Core		4	0	0	4
Pre-requisite	Basic knowledge in nanomaterials, sensors and internet.	Sylla Vers		2020 202	
Course Objectives:					
	asic transduction principles and parameters and character				
_	n the components, fabrication and operation of the	Physi	o-che	emo-	b10
nanosensors.	sensors suitable for various applications.				
•	res of merits of a nanosensor.				
e	Things (IOT) to enable combination of nanosensor	s for	rea	l wo	orld
applications.					
Expected Course Out	comes:				
	npletion of the course, student will be able to:				
	nderstand the various components of nanosensors a	nd tl	neir	K	2
characteristics. 2 Use various nand	ostructured materials for the fabrication of nanosensors fo			K	2
applications.	ostructured materials for the radification of nanosensors to	r vari	ous	N	.5
	uate the performance parameters of the nanosensors.			K	4
		ternet	of	K	
Things .		ternet	01		.0
	or properties by tuning the functional properties of the ma	ateria	ls.		
	- Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;			e	
	TRATHIAD INNIERS 3				
Unit:1	Sensor Principles		12	hou	rs
Active and passive	sensors - static characteristic - accuracy, error, prec	ision,			
	ty, noise, drift, detection limit - reproducibility, hys				
	ery time, dynamic range - dynamic characteristics - zer	o ord	er, fi	rst a	nd
second order sensors.					
	photo dielectric effect - photoluminescence effect - ele				
	escence effect - Barkhausen effect - Hal effect - Ettin t - peizoresistive effect – piezoelectric effect - pyrc				
	effect (magnetostriction) - Magneto resistive effect.			iicci	_
	encer (magnetosurenon) magneto resistive enceu				
Unit:2	Physical Sensors		12	hou	rs
-	am Mass Sensing by Quartz Crystal Microbalance - Disp				
0	Displacement Nanosensors; Magnetomotive Displacement				
	iezoelectric Displacement Nanosensors,- Force sensor				
	ure sensor - Membrane-Based CNT Electromechanical H				
	nel effect accelerometer- Silicon Nanowire Acceleromete or Ionic Solutions – Temperature sensor – CNT based				
	ensor- Silicon Nanowire Temperature Nanosensors –				
-	composite as Conductivity Response Infrared Nanosens	-			
-	istive UV Nanosensors.				
					_
Unit:3	Chemosensors		12	hou	rs

Gas Sensing with Nanostructured Thin Film, Adsorption on Surfaces, Conductometric transducers Suitable for Gas Sensing, Gas Reaction on the Surface, Effect of Gas Sensitive Structures and Thin Films- Metallic Nanoparticle Based Gas Sensors - Metal Oxide Gas Sensors - Carbon Nanotube Gas Sensors - Porous Silicon-Based Gas Sensor - Organic Polymer Film–Based Gas Sensors - Nanosensor Arrays - Nanoelectronic Nose – Optochemical Nanosensors.- Nanosensors Based on Surface-Enhanced Raman Scattering (SERS) - Colloidal Surface plasmon resonance (SPR) Colorimetric Gold Nanoparticle Spectrophotometric Sensor.

	nit:4	<u> </u>		Biosensors			12 hours
				al Biosensors –DNA			
				tionalization of CNTs			
D	ot-Based E	lectroche	mical Biosen	sors - Nanotube- and N	Vanowire-Bas	ed FET Nar	nobiosensors
- (Cantilever-	Based Na	nobiosensors	- Optical Nanobiosens	ors.		
Uı	nit:5			IoT Based Sensors			12 hours
In	ternet of th	ings – Bı	uilding blocks	of IoT, Characteristics	s of IoT- Desi	ign of IoT -	connectivity
—	mobile-sate	ellite-Blu	etooth -Wi-Fi	- Wimax- IoT enable	ed technologie	es – IoT cor	nmunication
m	odels -Inte	rnet of n	ano things - s	sensor network – App	lications – Ag	griculture –	Transport –
Er	nvironment	– Health	care – weara	ble devices.			
							•
U	nit: 6			Contemporary Issue	es		2 hours
Ex	pert lectur	es, online	e seminars– w	ebinars ob a lo a			
					Total Lectu	ire hours	62 hours
Bo	ook (s) for	Study					
1		*	nabled Senso	rs, Kourosh Kalantar-	zadeh, Benja	min Fry, S	pringer, New
	York, (20			A CONTRACTOR	, j	5,	
2	, ,	/	ical, Chemica	l and Biological, Vino	- d Kumar Kha	nna, CRC,(2012).
3				n approach, A. Bagha			
	Publisher	-		EDUCATE TO ELEVATE	,	, e	
Bo	ook (s) for	Reference	ce				
1	Teik-Cher Defense,	-		: Theory and Applic	cations in In	dustry, Hea	althcare and
2	Kevin C.	Honey c	hurch, Nanos	ensors for Chemical a	-		ons: Sensing
2				Nanoparticles, woodhe		g (2014).	
3	Biosensor	, Kajmoh	ian Joshi, Isha	Books, New Delhi, (2	.006).		
4	Chemical	sensors a	and Biosensor	s, Brain R. Eggins, Joh	nn-Wiley, New	w $\overline{\text{York}}$, (20)	02).
5	Smart Bio	sensor T	echnology, Ba	assi.A.S and Knopf.G.I	K, CRC Press	, New York	,(2007).
6	Sensors: (2003).	Principle	s and Applica	ations, Peter Hauptma	nn and Tim	Pownall, P	rentice Hall,
R	lated Onli	ine Cont	ents [MOOC	, SWAYAM, NPTEL	Websites et	r]	
1				n/noc19_ee41/preview		~·]	
2				106/108106165/			
3				107/115107122/			
4		•		105/106105166/			
	rse Design			jendrakumar	e-mail	rtrkumar(@buc.edu.in
	inse Design		DI IN I. NA	junarananan		<u>i u Kullial</u>	e Juc.cuu.iii

Mappi	Mapping with Programme Outcomes													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	S	М	S	М	S	М	М	М	L	S				
CO2	М	S	М	S	S	М	L	S	М	L				
CO3	М	L	L	S	М	S	М	М	L	М				
CO4	М	L	L	L	М	S	L	S	S	L				
CO5	М	L	Μ	L	L	М	L	М	М	S				
S	Strong		Μ	Medi	um		L	1	Low					

Course code	33D	ADVANCES IN NANOBIOTECHNOLOGY	L	Т	Р	С	
Core							
Pre-requisite	Pre-requisiteUnderstanding of Nanotechnology concepts and biologySyllabus Version						
Course Object	tives:						
effective of 2. Gain know	lrug deli vledge o	rinciples of drug delivery systems and control of var very n the mode of action of nanoparticle activity inside the co epts of advances in Nano therapeutics	_			for	
Expected Cou	rse Out	comes					
		appletion of the course, student will be able to:					
		emental principles of drug delivery systems			K	1	
		ode of action of nanoparticles and it's in vitro toxicity as	savs		_	2	
		ents and understanding the available therapy in cancer tro		nt	_	2	
4 Explore a	and study	y the possibility of applying and analyze varied nanoparti ug delivery			K		
	nding of	most recent advances in Nanobiotechnology with novel			K	2	
		Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Create	e		
		「「「「」」 「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」					
Unit:1		Principles of Drug Delivery Systems		12	hou	rs	
Controlled dr	ug deliv	ery, Absorption distribution metabolism excretion chara very - site specific drugs, Barriers for drug targeting - or site specific drug delivery.					
Unit:2		Toxicity Assays and their Principles		12	hou	rs	
Cell viability		elease, ROS production, Morphological observation, M net Assay, Cell cycle analysis and Apoptosis detection by		ane p	otent	tial,	
Unit:3		Nanoparticles and Cancer Therapy		12	hou	rs	
invasion, M Photodynami	ligratior c Theraj	s: Mechanisms of progression in Cancer: Cellular t a, Angiogensis and Metastasis. Chemotherapy, by (PDT), Photothermal Therapy (PTT), Magnetic Hyp ed Ultrasound (HIFU).	Imr	nuno	thera	ıру,	
Unit:4		Targeted Drug Delivery		12	hou	rs	
Classification	0	ted drug delivery systems, Bioconjugation, Nanoparticle ation, Gold nanoparticles for drug delivery, Magnetic nan		ace			
Unit:5	21	D Bio -Printing (Three Dimensional Bio-Printing)		12	hou	re	
Introduction techniques - I	- Histo Extrusio	ry, principle and its components, Classification of n-based bio-printing, Droplet-based bio-printing, Laser-b is for 3D Bio-printing- Magnetic Resonance Ima	ased b	bio-p pio-pi	rinti rintir	ng 1g,	

	U 1 .	, Computer-Aided Design Based Systems, 3D modelling softw ng - Applications of 3D Bio-printing and future trends.	vares, Bio inks for						
51		ng rippleations of 5D Die printing and ratale tiends.							
Unit:6 Contemporary Issues									
Expert lectures, online seminars – webinars									
		Total Lecture hours	62 hours						
Bo	ook (s) for S	Study	·						
1		very: Fundamentals and applications Hillery A M.,&Park,K.(Eds	s.).CRC Press,						
2	(2016).	$= f N_{\text{substant}} + 1 - f = C_{\text{substant}} - T_{\text{substant}} - C_{\text{substant}} + L - (T_{\text{substant}}) - (2)$	10\						
2	Handbook	x of Nanomaterials for Cancer Theranostics. Conde, J. (Ed.). (20)	18).						
Bo	ook (s) for l	Reference							
1	Drug deliv (2016).	very: Principles & applications Wang, B., Hu, L, Siahaan, T.J,	John Wiley& Sons,						
2	3D Bio-pr Press, (20)	rinting -Fundamentals, Principles and Applications, Ibrahim T. 16).	Ozbolat, Academic						
3		printing in Regenerative Engineering, Principles and osseini, Gulden Camci-Unal, 1 st edition, CRC press, (2018).	Applications, Ali						
Re	elated Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https://doi	i.org/10.1021/acs.chemrev.7b00258							
2	https://doi	i.org/10.5772/intechopen.71923							
Cou	urse Design	ed By Dr P. Premasudha e-mail prema	asudha@buc.edu.in						
		To THAT HIAR UNIVERSION OF THE SECOND							
	Manusia								

Mappi	Mapping with Programme Outcomes									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	L	Μ	S	Μ	S	S	S
CO2	S	S	М	Μ	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	Μ	S	М	Μ	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S
S	Stro	ong		Μ	Medi	um		L	,	Low

Course code	3EA	ENVIRONMENTAL SUSTAINABILITY OF	L	Т	Р	С
Core		NANOMATERIALS	4	0	0	4
Pre-requisite		General concepts of nanomaterials and their functional properties.	4 Sylla Vers	bus	202 202	20 -
Course Obje	ctives:					
		f this course are to:				
 Enhancin Study on Enhancin 	g the kno the devel g the kno	dents with basics of nanomaterials for environmental sus owledge of the students in nanomaterials for environmental opment of green energy sources using nanomaterials. owledge on CO_2 capturing.			on.	
Expected Co						
		appletion of the course, student will be able to:			1	
improv	ement in	cial effects of sustainable nanotechnology on climate-char our life quality, and promotion of natural resources	0		K	3
commo	n applica	les of catalysis (including photocatalysis) and the various tions in environmental treatment			K	4
films/m	embrane	materials (including carbon nanotubes and nanos s) in membrane based water treatments as well based water treatment methods			K	4
4 Improv	e the fun	ctional properties of photocatalysts and photoelectrocatly	sts.		K	5
reductio	on	l energy conversion sources such as water splitting			K	5
		Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	K6 - (Create		
Unit:1		Environmental issues in Water and Remediation			hou	
and Synthetic Compounds)- Plasticizers) perchlorate, Products. Ind	c Estroge - Perfluce - Huma perfluore ustrial co ontamina - Cl	1	lates an Inh als–Al , Per ne blu	and R ibitor kylph sonal ie. M Ozon	elate s ar nenol Ca ethoo atior	ed nd ls, re ds
Unit:2		Photocatalysis for Environmental Remediation		12	hou	rs
Photocatalyti Radical and Reaction Me Photocatalyst and Wavelen Photocatalyti	Definiti c Reaction Hydroge chanism s - Phote gth - Me c Degrad	on – Types of photocatalysis –Photocatalytic reactions ons - Reactive Oxygen Species - Trapped Electron and H en Peroxide - Hydroxyl Radical (OH•) - Singlet Mol s for Bare TiO ₂ - Reaction Mechanisms of Visible- cocatalytic Reaction Pathways – Effects of Molecular St ethods for Pathway Determinations - Prototypical Oxida ations - Alcohol Fragmentation and Oxidation	Iole - ecula Light- ructu	y Spec Supe r Oxy Resp re, Ca Reactiv	cies roxio /gen onsiv talys vity	in de - ve st, in
Unit:3		derstanding Photocatalysis and Photocatalyts	6		hou	
		Kinetic models – Substrate-Mediated Recombination - Sub Catalysts (TiO ₂) - Surface Manipulation - Crystal Face				

for Holes - Multisite Kinetic Model - Improving the Photocatalytic Efficacy - Thermodynamic Aspect of Photocatalysis - Design of Active Photocatalysts - A Conventional Kinetics in Photocatalysis: First-Order Kinetics - Langmuir–Hinshelwood Mechanism - Problems Related to Particle Size of Photocatalysts - Recombination of a Photoexcited Electron and a Positive Hole - Electron Traps as a Recombination Center - Dependence of Photocatalytic Activities on Physical and Structural Properties - Synergetic Effect–Doping Design of Photocatalytic Reactors - Rotating disk reactor system - continuous-flow reactor system.

Unit:4	Water Splitting for Hydrogen Production	12 hours						
General – The water splitting reaction – Natural water splitting – Water oxidation catalysts –								
Semiconducto	rs for water splitting – Dye sensitized photocatalysts -	- Electrochemical						
measurement	measurement as screening method for water oxidation – preparation of active electrodes – wet							
method – dry	method – dry method – Assessment of electrocatalytic activity.							

Unit:5	12 hours							
Introduction	- CO ₂ as a resource $-$ Circulate CO ₂ economy $-$ CO ₂	capture/Separation						
technologies -	- Direct air capture and nanomaterials - nanomaterials - MOF	F – Gas separation –						
CNTs – Nano	porous membranes – Nanocrystals – Nanoparticle ionic mate	erials - CuO loaded						
porous carboi	porous carbon – selectively permeable membranes – cellulose based porous nanomaterials –							
Nanocomposi	tes.							

Unit:6	Contemporary Issues	2 hours						
Expert lecture	Expert lectures, online seminars – webinars							
ET I WAR								

	Total Lecture hours 62 hours										
Bo	Book (s) for Study										
1	The Hand book of Environmental Chemistry, O. Hutzinger, D. Barceló, A. Kostianoy										
	(Editors), Springer-Verlag Berlin Heidelberg, 2008.										
2	Photocatalysis and Water Purification - From Fundamentals to Recent Applications, Pierre										
	Pichat (Editor), Wiley-VCH Verlag GmbH &Co. K Ga A, Boschstr. 12, 69469 Weinheim,										
	Germany 2013.										
3	Testing Novel Water Oxidation Catalysts for Solar Fuels Production, Ed. By Carminna										
	Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelii, Springer, 2019.										
4	Nanomaterials and Direct Air Capture of CO ₂ , Dirk Fransaer, Nanotechnology for Energy										
	Sustainability, Ed. Marcel Van de Voorde, Wiley VCH, 2017.										
Bo	ook (s) for Reference										
1	Nanomaterials for Environmental Protection, Ed. By Boris I. Kharisov, Oxana V.										
	Kharissova, H. V. Rasikha Dias, John Wiley, 2015.										
2	Nanotechnologies for Environmental Remediation : Applications and Implications, edited										
	by Giusy Lofrano, Giovanni Libralato, Jeanette Brown, Springer, 2016.										
3	Hydrogen Production by Electrolysis, Edited by AgataGodula – Jopek, Wiley – VCH, 2015.										
4	Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors										
	By Glen E. Fryxell, Guozhong Cao, Imperial Collge Press, 2007.										
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]										
1	https://nptel.ac.in/content/storage2/courses/105108075/module9/Lecture40.pdf										
2	https://nptel.ac.in/courses/118/107/118107015/										
3	https://nptel.ac.in/courses/105/107/105107181/										

4	https://onlinecourses.nptel.ac.in/noc20_ce31/preview_							
5	https://nptel.ac.in/courses/112/107/112107283/							
6	https://nptel.ac.in/courses/112/107/112107283/							
Co	Course Designed By Dr N. Ponpandian e-mail ponpandian@buc.edu.in							

Маррі	Mapping with Programme Outcomes									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	L	Μ	S	S	S	S	S	S
CO2	S	М	L	Μ	S	S	S	S	S	S
CO3	S	L	М	S	S	S	S	S	S	S
CO4	S	L	М	S	S	М	S	S	S	S
CO5	М	Μ	L	S	S	Μ	S	S	S	S
S	Stro	ong		Μ	Medi	um		L	1	Low

Course code	3EB	SOCIETAL IMPACTS OF	L	Т	Р	С		
	_	NANOTECHOLOGY						
Electiv	ve	General concepts of nanomaterials and their	4 Sylla	0 bug	0 202	4		
Pre-requisite	•	functional properties.	Vers		202	-		
Course Obje	ctives:		vers					
•		f this course are to:						
1. To impart	the know	wledge about the economic impact of nanotechnology.						
		rious social impacts of nanotechnology trend and research	h.					
		wledge about ethics and laws related to nanotechnology						
Expected Co								
		pletion of the course, student will be able to:						
1 Analyze	e the eco	nomic impact of nanotechnology			K	3		
2 Underst	and the e	ethics and laws related to nanotechnology			K	[4		
3 Underst	and the s	societal impacts of nanotechnology			K	[4		
4 Analyze	e the lega	l risks on nanotechnology.			K	5		
		product scaling up in nanotechnology.			K	5		
	-	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Ireate				
Unit:1		Protection and Regulation for Nanotechnology			hou	rs		
Unit:2 The application nanotechnolog	ons of y, strie	Liability Legal Aspects of Nanotechnology civil &criminal laws-civil liability, application of ct liability for nanotechnology products-warrant ss organization-criminal liability		glige	hou nce actio	to		
Unit:3	E	conomic Impacts and Commercialization of Nanotechnology and Social Scenarios	and		hou			
Introduction -Socio-Economic Impact of Nanoscale Science: Initial Results and Nano bank- Managing the Nanotechnology Revolution: Consider the Malcolm Baldrige National Quality Criteria -The Emerging Nano Economy: Key Drivers, Challenges, and Opportunities- Transcending Moore's Law with Molecular Electronics and Nanotechnology- Navigating Nanotechnology Through Society -Nanotechnology, Surveillance, and Society: Methodological Issues and Innovations for Social Research-Nanotechnology: Societal Implications: Individual Perspectives Nanotechnology and Social Trends-Five Nanotech								
Unit:4		Ethics, Law and Governance		12	hou	rs		
Ethics and Nar with Nanotech Nanotechnolog Implications of	no: A Su hnology gy Initiat of Emerg Studies	I Issues in Nanoscience and Nanotechnology: Reflection rvey-Law in a New Frontier- An Exploration of Patent I -The Ethics of Ethics -Negotiations over Quality tive. Governance-Problems of Governance of Nanotec ging Science and Technologies: A Research Agenda (STS)- Institutional Impacts of Government Scie	Matter of chnolo for	rs Ass Life gy -S Scien	socia in Socie ice a	ted the etal and		

U	nit:5		Public Perceptions a	nd Educa	tion	12 hours				
Pub	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction									
Res	Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of									
	Nanotechnology's Social Impacts -Nanotechnology in the Media: A Preliminary Analysis-Public									
Eng	gagement w	ith Nano	scale Science and Engin	eering -N	anotechnology: M	oving Beyond Risk-				
			s and Nanotechnology:							
			tal Implications — Indi		rspectives-Historic	cal Comparisons for				
Ant	icipating Pu	ublic Rea	ctions to Nanotechnology	•						
	•• •		a	-						
	nit:6		Contemporary	y Issues		2 hours				
Ex	pert lecture	es, online	seminars - webinars							
				T . 4 . 1	T					
				Lota	Lecture hours	62 hours				
Bo	ook (s) for S									
1			nd William Sims Bainbr	idge "Nan	otechnology: Soci	ietal Implications II-				
			ives", Springer, 2007.							
2	-		nd Michael. D, Mehta		chnology: Risk,	Ethics and Law",				
			James publication, 2006.							
3	-		notechnology: Global Str	ategies, In	dustry Trends and	l Applications", John				
	Wiley & S									
4			and Jean-Yves Bottero "			ogy applications and				
	impact of	nanomate	rial", The Mc <mark>Gr</mark> aw-Hill (Companies	s, 2007.					
				te la						
Bo	ook (s) for	Reference	e ·····							
1	Jurgen Sc	hulte —	Nanotechnology: Global	Strategies	s, Industry Trend	s and Applications ^{II} ,				
			Ltd (2005).	(Salda						
2	Mark. R.	Weisner	and Jean-Yves Bottero	— Enviro	onmental Nanotecl	hnology applications				
	andimpact	of nanon	naterial ^I , The McGraw-H	ill Compar	nies (2007).					
R			nts [MOOC, SWAYAM	<i>.</i>	, Websites etc.]					
1	https://nptel.ac.in/courses/103/105/103105122/									
	2 https://nptel.ac.in/content/storage2/courses/105108075/module9/Lecture40.pdf									
3	3 https://www.azonano.com/article.aspx?ArticleID=4992									
ļ										
Co	Course Designed ByDr N. Ponpandiane-mailponpandian@buc.edu.in									

Mappi	ng with	Program	mme Ou	itcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	Μ	L	Μ	S	S	S	S	S	S
CO2	S	Μ	L	Μ	S	S	S	S	S	S
CO3	S	L	М	S	S	S	S	S	S	S
CO4	S	L	Μ	S	S	Μ	S	S	S	S
CO5	М	М	L	S	S	Μ	S	S	S	S
S	Stro	ong		Μ	Medi	um		L		Low

Cou	rse code	37V	CUMMED INTERNSHIP PROJECT	Р	С
	Core		SUMMER INTERNSHIP PROJECT	2	2
Pre-	requisite		Basic knowledge and understanding in physics, chemistry and biology in addition to nanoscience and technology Syllabus	202 -202	
Cou	rse Object	tives:			
2. 3. 4. 5.	environme This will prospectiv It also pro An additio student fre placement The stude obtained v	ent and it enable the re employ vides involution on a lor of higher nt shoul with the	dent's perspective by providing an exposure to real life organ ts various functional activities. he students to explore an industry/organization, build a relationshi yer, or simply hone their skills in a familiar field. valuable knowledge and networking experience to the students. efit that organizations may derive is the unique opportunity to eva ng-term perspective. Thus this internship can become a gateway reducation of the student. Id ensure that the data and other information used in the study permission of the institution concerned. The students should also stly with the organization.	p wi luate for f repor	th a the inal rt is
Exne	ected Cou	rse Auto	comes.		
			appletion of the course, student will be able to:		
1	1		nce in an organizational setting.	K	<u> </u>
2	Excellent integrated	opportu d into th	unity to see how the theoretical aspects learned in classes are he practical world. On-floor experience provides much more rience which is often worth more than classroom teaching.	K	K2
3			arn new skills and supplement knowledge.	K	3
4		-	actice communication and teamwork skills.		
5		ity to l	earn strategies like time management, multi-tasking etc in an		
K1-	– Rememb	er; K2 –1	Undestand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create		
	rks will be	e awardo	the Summer Internship Project will be 50 and it carries 2 credied for the following aspects:		
1	organis	ation/un	Clear understanding of the topic/subject; understanding htt//field as well as review of similar studies		
2	the stud	ły.	the study: Objectives, formulation of the problem, scope, and ratio		
3			odology adopted for the study: Analytical, Survey, Field Work <i>vith appropriate justification and reasoning.</i>	or a	ny
4	Analys	is and c	conclusions: The logic of analysis, source of data, whether the conc the objectives, etc.	lusic	ons
5			and learning from the project: Details of the contribution of the he organisation, the learning from the study for the student, etc.	stud	y,,
6			nents: References/Citations and Bibliography and help, if any,, reviduals/organisations.	eceiv	red
			f the report, format of the report, flow of the report, style, lan	01100	σe

8		-		ssion, time management, language,						
9	Overall impress	Overall impression.								
10	It also includes	the report on the study tour	r during I and	d III Semesters.						
Cour	se Designed By	Dr N. Ponpandian	e-mail	ponpandian@buc.edu.in						

Mappi	Mapping with Programme Outcomes											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	S	М	L	S	S	S	L	S	S		
CO2	S	S	L	L	S	S	М	М	М	S		
CO3	S	S	М	М	S	S	М	L	S	S		
CO4	S	S	L	М	S	S	L	Μ	Μ	S		
CO5	S	S	L	L	S	S	Μ	М	М	S		
S	S Strong M Medium L L				Low							

Course	code	33P	PRACTICAL – III – APPLICATIONS OF	L	Т	Р	С
	Core		NANOMATERIALS	0	0	4	4
Pre-req			Basic knowledge and understanding in nanoscience, physics, chemistry and biology.	Sylla Vers	bus	202 -202	20
Course	Object	tives:					
			operating different instruments used in the analysis of va cal constituents and study the applications of nanomateri		physi	ical,	
Expecte	ed Cou	rse Outo	comes:				
-			pletion of the course, student will be able to:				
			esign aspects of application specific Nanoscale Devices.			K	4
			properties used for the fabrication of nanosensors.			K	
		-	inctionalization and applications of nanomaterials.			K	
				madia			
	plicatio		ledge of electrochemical energy storage systems and bio	mearc	ai	K	.)
1	1		to use techniques, skills and modern tools necessary for	nracti	ral	K	6
	plicatio	•	to use teeninques, skins and modern tools necessary for	practi	cui	13	.0
			Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K	6 – Cr	eate	1	
		,					
			Practical				
1	Electr	ochemic	al properties of nanoparticles using cyclic-voltammetry				
2			al sensors for the detection of pollutants in water				
3			icle based SERS sensing characteristics of toxic compou	nd			
4	Evalu	ating gas	s sensing parameters for a given nanosensor				
5	Deterr	mination	of charge storage efficiency, energy density of a given r	nanom	ateria	ls	
5		superca					
6			photocatalytic degradation efficiency of a give na	nomat	erial	agai	inst
			egradation.	1	- (1	1	
7			the surface energy of a given nanomaterial using contact		meth	oa	
8		0	figures of merit of a field effect transistor based gas sense hydrogen evolution properties of a given electro catalys				
			f Lambert Beer's law and determination of concentra		of up	knov	vn
10			V-Vis spectrophotometer.		JI UII		• 11
11		•	scaffolds				
12			f scaffolds				
13	-		and seeding				
14	Electr	o chemi	cal corrosion experiment				
15	Anim	al Cell C	Culture Techniques – Primary Cell Culture, Sub Culturing	7			
Course	Designe	ed By	Dr N. Ponpandian e-mail ponpandian@	bu			

Mappi	ng with	Mapping with Programme Outcomes											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	S	S	М	S	S	S	S	S	S			
CO2	S	S	М	S	S	S	S	S	S	S			
CO3	S	S	М	Μ	S	S	S	S	S	S			
CO4	S	S	М	L	S	S	S	S	S	S			
CO5	S	S	L	М	S	S	S	S	S	S			
S	Stro	ong		Μ	Medi	um		L	1	Low			

Course code	43A		L	Т	Р	С				
	43A	IPR and Biosafety				_				
Core		Basic knowledge in intellectual property rights and	2 Sylla	0 bug	0 202	$\frac{2}{2}$				
Pre-requisite		laboratory safety.	Vers		202					
Course Object	tives:									
The main object	ctives of	this course are to:								
		e basic concepts of IPR and Biosafety concepts and	its a	pplica	tion	in				
different l						•.				
-		edge on the process of patenting and its database search	es, and	alysis	and	1ts				
report form 3. To know a		R policy, Indian and International Laws on patent.								
		edge on Biosafety and its significance in different areas of	f scier	ice						
Expected Cou			beren							
	On the successful completion of the course, student will be able to:									
1 The stud	dents wil	l get an overall understanding of basic history and classif	icatio	n	T	~				
of paten					K	2				
2 Learnin	g the tec	hniques to obtain database search in different portals and	its		ĸ	[4				
	analysis.									
-		with the theoretical and practical understanding of paten	t writi	ng,	K	5				
U 1		blication and related structure and frames.								
		ional and international laws of IPR.				2				
		GMO, biosafety cabinets, principles and its guidelines.		~		2				
	per; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (
Unit:1		Types of IP			hou					
		- Copyright & Related Rights - Industrial Design - Trad								
		ations - Protection of new GMOs; International fra ention in context of "prior art" - Patent databases - Searc								
-		wise patent searches (USPTO, EPO, India etc.) - An	-							
formation.	country	wise patent searches (OSI 10, EI 0, India etc.) 74	ary 515	and	Tept	'nι				
Unit:2		Types of Patents		6	hou	rs				
		0 - Recent amendments - Patent application- forms and								
		nes - Filing of a patent application - Precautions		-		-				
		ure - Patent application- Forms and guidelines -Fee								
		atent applications -Provisional and complete specifica								
-		blications - International patenting – Requirement -Proce or patenting-introduction to existing schemes.	dures	and	costs	; -				
Financial assi	stance ic	or patenting-introduction to existing schemes.								
Unit:3		IPR Policies		6	hou	rs				
	Govern	ment of India - Indian & international patent laws - India	n pate							
		Financial assistance for patenting-existing schemes-	-							
		patentability of microorganisms - IPR and WTO rea								
-	d plant	genetic resources-GATT and TRIPS - Patenting gene	- Issu	es and	d ca	se				
studies.										
TT *4 - 4		Dia na fata		-	1					
Unit:4		Biosafety		Ó	hou	rs				

Historical background - Introduction to biological safety cabinets - Primary containment for biohazards - Biosafety levels- Biosafety levels of specific microorganisms - Recommended biosafety levels for infectious agents and infected animals - Biosafety guidelines - Government of India.

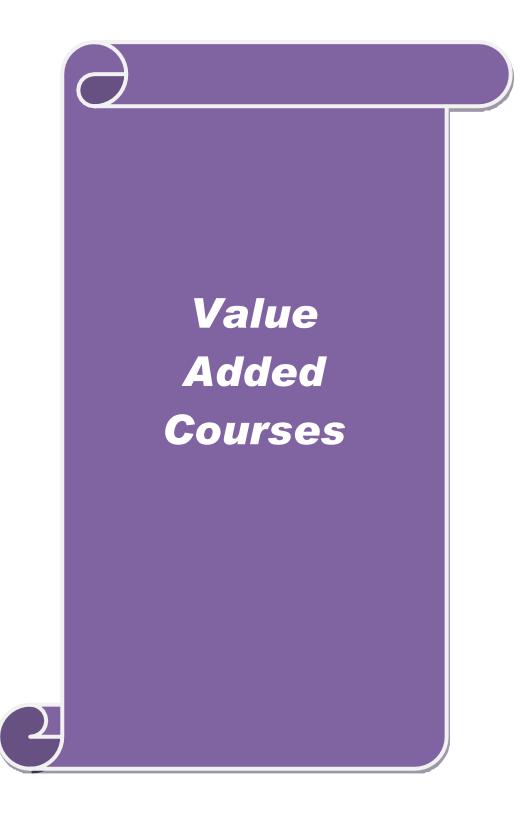
Unit:5		Rules in Bio	safety		6 hours			
Definition of	GMOs a	& LMOs - Roles of insti	tutional bio	osafety committee	- RCGM, GEAC -			
		food and agriculture - En						
		k management and comm			onal regulations and			
relevant intern	national a	greements including Car	tagena prot	ocol.				
Unit:6		Contemporar	y Issues		2 hours			
Expert lecture	s, online	seminars - webinars						
			Total	Lecture hours	32 hours			
Book (s) for S	Study							
1 Intellectua	l Propert	y Law, P. Narayanan, 3 rd	Edition, Ea	astern Law House,	, 2018.			
3 Biotechno	logy, Joł	n E. Smith, 5 th Edition, C	ambridge U	Jniversity Press, 2	012.			
				•				
Book (s) for	Referen	ce	91/2					
1 Intellectua	l Propert	y Law containing Acts an	n <mark>d Rul</mark> es, U	niversal Law Publ	lication Company.			
		y Rights, Neer <mark>aj Pandey</mark> ,						
3 Laborator	y biosafe	ty manual Th <mark>ird</mark> edition,	World Heal	th Organization, 2	2004.			
4 Biological	Safety:	Principles and Practices, 3	5th Edition	, Volume 25, Nun	nber 1, Dawn P.			
Wooley; k	Karen B.	Byers, ASM Press, Wash	ington, DC	, USA, 2017.				
		AK Coimbator	Galeb					
		ents [MOOC, SWAYAM		Websites etc.]				
		/courses/109/106/109106						
		/noc/courses/noc18/SEM2		<u>45/</u>				
3 <u>https://np</u>	tel.ac.in	/courses/109/106/109106	148/					
4 <u>https://np</u>	otel.ac.in	/courses/127/105/127105	008/					
5 <u>https://or</u>	linecour	ses.nptel.ac.in/noc20_hs1	8/preview					
Course Design	ed By	Dr N. Ponpandian	e-mail	ponpandian@bu	ıc.edu.in			

Mappi	ng with	Program	mme Ou	utcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	L	S	М	Μ	S	S	S
CO2	S	М	М	Μ	М	L	L	S	S	S
CO3	S	S	М	L	S	S	Μ	S	S	М
CO4	S	S	М	L	М	М	S	S	S	S
CO5	S	S	М	Μ	S	S	S	S	S	S
S	Stro	ong		Μ	Medi	um		L		Low

Core Interface of the Trith Core 0 0 8 8 Pre-requisite Basic knowledge and understanding in physics, and technology Syllabus Version 2020 -2021 Course Objectives: 1. To offer students an opportunity to demonstrate their competence in laboratory work. 2020 -2021 2. To provide a vehicle for integrating the knowledge gained in various subjects of the degree course. 3. To allow the exercise of the undergraduates' personal qualities - <i>viz</i> , maturity, initiative and creative ability. 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. 5. To solve problems of a non-routine nature. K4 2 In depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently 5 Fevaluate; K6- Create 1 Ability to work and study independently 1 3 Ability to work and study independently 1 4 Ability to work and study independently 1 5 A	Course co	de 47V	PROJECT AND VIVA VOCE	L	Т	Р	C
Pre-requisite chemistry and biology in addition to nanoscience and technology Symbol Version 2020 Course Objectives:	0	ore		0	0	8	8
1. To offer students an opportunity to demonstrate their competence in laboratory work. 2. To provide a vehicle for integrating the knowledge gained in various subjects of the degree course. 3. To allow the exercise of the undergraduates' personal qualities - <i>viz</i> , maturity, initiative and creative ability. 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K3 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently K4 5 Apply the knowledge to design new research problems. K1- Remember; K2Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create Independently frequencies of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. <	Pre-requi	site	chemistry and biology in addition to nanoscience				
 To provide a vehicle for integrating the knowledge gained in various subjects of the degree course. To allow the exercise of the undergraduates' personal qualities - <i>viz.</i> maturity, initiative and creative ability. To apply communication skills, both oral and written, to communicate results, concepts and ideas. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: Ability to plan and implement an investigative or developmental project given general objectives and guidelines Ability to plan and implement an investigative or developmental project given general objectives and guidelines Ability to analyze data to produce useful information and to draw conclusions by systematic deduction Ability to work and study independently Apply the knowledge to design new research problems. KI- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students are broader perspective of the work hey are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through propert miting. These reports form the major part of the final assessment. Throughout the project such were necessary, how to use instruments, data analysi	Course O	jectives:					
course. 3. To allow the exercise of the undergraduates' personal qualities - viz. maturity, initiative and creative ability. 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently K4 5 Apply the knowledge to design new research problems. K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which	1. To of	fer students	an opportunity to demonstrate their competence in laborat	ory w	ork.		
 To allow the exercise of the undergraduates' personal qualities - viz, maturity, initiative and creative ability. To apply communication skills, both oral and written, to communicate results, concepts and ideas. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: Ability to plan and implement an investigative or developmental project given general objectives and guidelines In-depth skill to use some laboratory / workshop equipment to process and characterize materials Ability to analyze data to produce useful information and to draw conclusions by systematic deduction Ability to work and study independently Apply the knowledge to design new research problems. K1– Remember; K2–Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create K4 Conclusion of the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to comstant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the project. The writing skill is developed through project size reports form the major part of the final assessment. Throughout the project size reals or ganized with a view to develop their ability to comstant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the project. The writing skill is developed through project size reports form the major part of the final assessment. Throughout the project were trained, when neccessful completion of the project. They also have to learn to	2. To pr	ovide a vel	nicle for integrating the knowledge gained in various sub	jects	of the	e deg	gree
creative ability. 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently 5 5 Apply the knowledge to design new research problems. K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also org							
 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 			ercise of the undergraduates' personal qualities - viz. matu	ırity,	initia	tive	and
ideas. 5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction 4 Ability to work and study independently 5 Apply the knowledge to design new research problems. KI- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presen		•		1.			1
5. To solve problems of a non-routine nature. Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently K4 5 Apply the knowledge to design new research problems K1 K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed thro	-	ply commu	inication skills, both oral and written, to communicate res	sults,	conce	epts	and
Expected Course Outcomes: On the successful completion of the course, student will be able to: I Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently 5 5 Apply the knowledge to design new research problems. K1 K1 Remember; K2–Understand; K3 Apply; K4 – Analyze; K5– Evaluate; K6– Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions		va problan	as of a non-routing natura				
On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 Ability to work and study independently Ability to work and study independently 5 Apply the knowledge to design new research problems. K1- K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessent via an oral presentation towards the end of the project. The writing skill is developed through report writing. These reports form the major part of the	5. 10.80	ive problem	is of a non-fourne nature.				
On the successful completion of the course, student will be able to: 1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 Ability to work and study independently Ability to work and study independently 5 Apply the knowledge to design new research problems. K1- K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessent via an oral presentation towards the end of the project. The writing skill is developed through report writing. These reports form the major part of the	Expected	Course Ou	tcomes:				
1 Ability to plan and implement an investigative or developmental project given general objectives and guidelines K4 2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently K4 5 Apply the knowledge to design new research problems. K1– Remember; K2–Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the project. The writing skill is developed through upontored through or the major part of the final assessment. Throughout the project exercise, students are trained, when neccessary, how to use instrumen	-						
general objectives and guidelines K2 1 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently S 5 Apply the knowledge to design new research problems. K1– Remember; K2–Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the project. The writing skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the orgic for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Stud				ven		K	7/
2 In-depth skill to use some laboratory / workshop equipment to process and characterize materials K2 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently K3 5 Apply the knowledge to design new research problems. K1– Remember; K2–Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project (75): a. Aim and Objectives of the Research (10)				ven		n	.+
characterize materials K3 3 Ability to analyze data to produce useful information and to draw conclusions by systematic deduction K3 4 Ability to work and study independently. K3 5 Apply the knowledge to design new research problems. K1– Remember; K2–Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6– Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project (75):<		•				K	2
a systematic deduction 4 Ability to work and study independently 5 Apply the knowledge to design new research problems. K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project (75): 3 Assessment Guideline of Project (75): 3 Astendology (15)		-					
a systematic deduction 4 Ability to work and study independently 5 Apply the knowledge to design new research problems. K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. 1 Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project (75): 3 Assessment Guideline of Project (75): 3 Astendology (15)	3 Abil	ty to analy	ze data to produce useful information and to draw conclusi	ons b	У	K	3
5 Apply the knowledge to design new research problems. K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project (75): 3 Assessment Guideline of Project (75): 3 Astim and Objectives of the Research (10)	syste	matic dedu	ction				
K1- Remember; K2-Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create About the Project 1 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the project. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. 3 Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15)	4 Abil	ty to work	and study independently				
About the Project1The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both.1Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration.3Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15)	5 App	y the know	ledge to design new research problems.				
 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. 3 3 	K1–Ren	ember; K2	–Understand; K3– Apply; K4– Analyze; K5 – Evaluate; K	6 – Cr	eate		
 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. 3 3 			Side Side unen suut po				
 The purpose of final year projects is to provide students an opportunity to apply the knowledge they have learnt, their intellectual abilities and practical skills to solving real, or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. 3 3 			About the Project				
 or close to real life engineering problems. These problems may take the form of an investigation or the development of devices or both. Throughout the project, students are expected, with guidance from their supervisors, to do things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	1 kn	owledge the	ey have learnt, their intellectual abilities and practical skil	ls to s	solvir	ng re	al,
 things and obtain information for themselves. Literature review, which provides the students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	or	estigation	or the development of devices or both.				
 students a broader perspective of the work they are engaged in, is an essential part of the project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 		-		-			
 project. The projects are also organized with a view to develop their ability to communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 		-		-			
 communicate, both verbally and in writing. The verbal skill is developed through constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 					-		
 constant meetings and discussions with supervisors and assessed via an oral presentation towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	-	•				-	
 towards the end of the projects. The writing skill is developed through report writing. These reports form the major part of the final assessment. Throughout the project exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	CO						
 exercise, students are trained, when necessary, how to use instruments, data analysis and interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	/		• •		-		
 interpretation effectively in order for a successful completion of the project. They also have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	Th	ese reports	form the major part of the final assessment. Through	hout	the	proje	ect
 have to learn to how to optimize the outcomes under various constraints. Student progress is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 	ex	ercise, stud	ents are trained, when necessary, how to use instruments,	data a	analy	sis a	nd
is continuously monitored throughout the project duration. Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15)		-				•	
 Assessment Guideline of Project (75): a. Aim and Objectives of the Research (10) b. Methodology (15) 				Stud	ent p	rogre	SS
a. Aim and Objectives of the Research (10)b. Methodology (15)							
⁵ b. Methodology (15)							
	1						

	d. Data Analy	sis (15)		
	e. Writing (10)		
	f. Conclusion	(5)		
	Assessment Gu	ideline of Power Point Pres	sentation (25)	:
4	i) Body langu	age (5 marks)		
4	ii) Communic	ation Skills (5 marks)		
	iii) Content of	the power point presentation	on (15 marks)	
Cours	se Designed By	Dr N. Ponpandian	e-mail	ponpandian@buc.edu.in

Mappi	ing with	Progra	mme O	utcomes	5					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	S	S	S	S	S
CO2	S	S	L	L	S	S	S	S	S	S
CO3	S	S	S	Μ	S	S	S	S	S	S
CO4	S	S	L	S	S	S	S	S	S	S
CO5	S	S	Μ	L	S	S	S	S	S	S
	-									
S	Stre	ong		Μ	Medi	um		L		Low



	1GS	INTRODUCTION TO NANOSCIENCE AND	L	Т	Р	С	
Supportive		TECHNOLOGY		0	0	2	
Pre-requisite		Studied Physics/Chemistry/Biology/Any Allied subject during graduate Programme.Syllabu Version			202 -202		
Course Objectives:							
		basic concepts of the atomic structure					
2. To be able to get familiarized with the basic of chemical bonding							
		of nanoscience and technology owledge about nano materials synthesis					
		ne basic characterizations of nanomaterials					
<u> </u>							
Expected Cou	rse Out	comes:					
-		pletion of the course, student will be able to:					
1 Rememb	er the ba	sic structure of the atoms and molecules			K	1	
2 Understa	nd the ch	nemical bond formation			K	2	
3 Apply ba	sic chem	nistry to prepare new nanomaterials			K	3	
4 Analyze conforma		materials using different characterization techniques for			K	4	
K1– Rememb	oer; K2 –	Understand; K3– Apply; K4– A nalyze; K5 – Evaluate; K	6 – Cro	eate			
Unit:1		Basics of Atomic Structures		6	hou	rs	
electronic stru	uctures,	ons, Electrons & Periodic trends: Atomic models, Periodic strends: Atomic models, Periodic strends: Atomic models, Periodic strends of atoms & ions, Ionization Energy, Electron afficients of groups.					
		and the second and th					
Unit:2	<u> </u>	Chemical Bonding		6	hou	rs	
Molecular str Ionic, Covale	ent and V	10 Bisoiuneor 9-unit		d: M	etalli	с,	
Molecular str Ionic, Covale theory for sin Unit:3	ent and V nple mole	Chemical Bonding nd Bonding Theories: Atomic Bonding in solids, Types Vender-Waals bond; Hybridization; Hydrogen bonding, ecules such as diatomic molecules etc., Basic Concepts of Nanoscience	Molec	d: M cular 6	etalli orbit hou	c, al rs	
Molecular str Ionic, Covale theory for sin Unit:3 Nanoscience- nanostructure Surface to v	ent and V nple mole - Nano es- Allot volume	Chemical Bonding nd Bonding Theories: Atomic Bonding in solids, Types Vender-Waals bond; Hybridization; Hydrogen bonding, ecules such as diatomic molecules etc.,	Molec tion	d: M cular 6 of of	etalli orbit hou carbo	c, al rs on it-	
Molecular str Ionic, Covale theory for sin Unit:3 Nanoscience- nanostructure Surface to v dependent va Unit:4	ent and M nple mole - Nano es- Allot volume riation ir	Chemical Bonding nd Bonding Theories: Atomic Bonding in solids, Types Vender-Waals bond; Hybridization; Hydrogen bonding, ecules such as diatomic molecules etc., Basic Concepts of Nanoscience technology- Nanomaterials definitions,- Classificat ropes, dimensions (one, two, three, and zero dimension ratio-Energy at bulk and nano scale- Nature Nanop h Physical- Chemical- Catalytic properties. Synthesis of Nanomaterials	Molect tion on), co phenor	d: Micular 6 of of of mena 6	etalli orbit hou carbo emer - Si hour	c, al rs on it- ze	
Molecular str Ionic, Covale theory for sin Unit:3 Nanoscience- nanostructure Surface to v dependent va Unit:4 Chemical pro- microemulsio	ent and V nple mole - Nano es- Allot volume riation ir ecipitatic ons, Solv heating	Chemical Bonding nd Bonding Theories: Atomic Bonding in solids, Types Vender-Waals bond; Hybridization; Hydrogen bonding, ecules such as diatomic molecules etc., Basic Concepts of Nanoscience technology- Nanomaterials definitions,- Classificat ropes, dimensions (one, two, three, and zero dimension ratio-Energy at bulk and nano scale- Nature Nanog n Physical- Chemical- Catalytic properties. Synthesis of Nanomaterials on and co-precipitation, Sol-gel synthesis, Microemu rothermal synthesis, Thermolysis routes, Metal nanocrys synthesis, Photochemical synthesis, Electrochem	Molect tion on), co phenor lsions stals by	d: Micular 6 of 6 onfine mena 6 0 r r y redu	etalli orbit hou carbo emer - Si hour	rs rs on it- ze se n,	
Molecular str Ionic, Covale theory for sin Unit:3 Nanoscience- nanostructure Surface to v dependent va Unit:4 Chemical pro microemulsic Microwave	ent and V nple mole - Nano es- Allot volume riation ir ecipitatic ons, Solv heating	Chemical Bonding nd Bonding Theories: Atomic Bonding in solids, Types Vender-Waals bond; Hybridization; Hydrogen bonding, ecules such as diatomic molecules etc., Basic Concepts of Nanoscience technology- Nanomaterials definitions,- Classificat ropes, dimensions (one, two, three, and zero dimension ratio-Energy at bulk and nano scale- Nature Nanog n Physical- Chemical- Catalytic properties. Synthesis of Nanomaterials on and co-precipitation, Sol-gel synthesis, Microemu rothermal synthesis, Thermolysis routes, Metal nanocrys synthesis, Photochemical synthesis, Electrochem	Molect tion on), co phenor lsions stals by	d: Micular 6 of 6 onfine mena 6 0 r y redu sym	etalli orbit hou carbo emer - Si hour ever	c, al rs on it- ze se n, is,	

		_							
	Unit:6 Contemporary Issues					2 hours			
Exp	pert lecture	es, online	seminars - webinars	8					
				Total Lectur	re hours	32 hours			
Boo	ok (s) for	Study							
1	U		try, T. W. Graham ley & Sons, New Yo	Solomons, Craig B. Fryhork, (2017).	nle, Scott A.	Snyder, 12 th			
2	Nanoscale Science and Technology, Robert W. Kelsall, Ian W. Hamley, Mark Geoghegan, John Wiley & Sons Ltd, (2005).								
3	NANO	The Es		ling Nanoscience and Na te Limited, (2018).	notechnology	v, T. Pradeep,			
4	Schodek, Nanomaterials, Nanotechnologies and Design M.F. Ashby, P.J. Ferreira, D.L, Elsevier, (2009).					Ferreira, D.L,			
5				.R. Sharma, S. Chand Pub	lishing, (2007	7).			
			* **		-				
Boo	ok (s) for	Referenc	e						
1			ed Organic Chemist n, Wiley, (2019).	ry: Reactions, Mechanism	s, and Structu	are, Michael B.			
2	Nanoparticle Technology Handbook, Masuo Hosokawa, Kiyoshi Nogi, Makio Naito, Toyokazu Yokoyama, Elsevier Publications, (2007).					Makio Naito,			
3	Encyclopedia of Materials Characterization, Series Editors: Butxetworch-Heinemann, C. Richard Brundle and Charles A. Evans. Jr, a division of Reed Publishing CUSA) Inc, (1992).								
4	Introduction to Nanoscience and Nanotechnology, K K Chattopadhyay, Arghya Narayan Banerjee, PHI Learning, (2009).								
	Combator								
Rel	ated Onli	ne Conte	ents [MOOC, SWA]	YAM, NPTEL, Websites	etc.]				
1			ov.in/nd1_noc19_m						
2	https://s	wayam.g	ov.in/nd1_noc19_m	m22/preview					
Cour	se Design	ed By	DrP. Sakthivel	e-mail	sakthivel.p	@buc.edu.in			

Course code 2GS Supportive		Applications of Nanotechnology		Т	Р	С
		Applications of Autotechnology	2	0	0	2
Pre-requisite		Nanoscience/Any Allied Subject During Graduate		bus sion	202 -202	
Course Objec	tives	Programme.				
· ·		nology applications.				
		dents to carryout research in nanotechnology.				
Expected Cou		comes: appletion of the course, student will be able to:				
					V	1
		applications of nanomaterials in different fields al dye materials for DSSCs			K	.1
11.		lifferent types of energy devices				.5 2
		aterials for wastewater purification				.2 [4
		evice for Biological Applications			_	.4 .5
-		Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	V6 (Traata		
KI - Kellielli	bei, K 2 -	Understand, KS - Appry, K4 - Anaryze, K5 - Evaluate,	<u>K0-(</u>		2	
Unit:1		Nanomaterials for Solar Cells		6	hou	rs
	r photovo	oltaic (PV) energy conversion, Types of photovoltaic	0.0110			
photovoltaic	cells, Or	ganic photovoltaic cells, Dye-sensitized solar cells (DSS	Cs), (Quant	um c	lot
photovoltaic (QD)-sensitiz solar cells, C	cells, Org	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends.	Cs), ()uant n (BI	um c HJ-S	lot C)
photovoltaic (QD)-sensitiz solar cells, C Unit:2	cells, Or zed solar urrent sta	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage	Cs), (unctio)uant n (Bl	um c HJ-S hou	lot C)
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic	cells, Or zed solar urrent sta of ene cal ener	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends.	Cs), (unctio	Quant n (BI	um c HJ-S hou	lot C) rs For
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic	cells, Or zed solar urrent sta of ene cal ener	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends.	Cs), (unctio	Quant n (BI	um c HJ-S hou	lot C) Irs For on
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo	cells, Or zed solar urrent sta of ene cal ener ipercapad	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter	Cs), C unctio nanom ies (I	Quant n (BI 6 ateria Lithiu	um c HJ-S hou Ils f m i	lot C) Irs For on Irs
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage orgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system	Cs), C unctio nanom ies (I	Quant n (BI 6 ateria Lithiu 6 nofert	um c HJ-S hou Ils f m i	lot C) Irs for on Irs rs:
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment	cells, Or zed solar urrent sta of ene cal ener ipercapac ogy in a d mixed f al polluta	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 h blicati	um d HJ-S hou ils f m i hou ilize	lot C) Irs for on Irs: 5 of
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage orgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waster	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 h blicati	um d HJ-S hou ils f m i hou ilize	lot C) Irs for on Irs: 5 of
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 h blicati	um d HJ-S hou ils f m i hou ilize	lot C) rs for on rs: s of
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage orgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waster	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 holicati	um d HJ-S hou ils f m i hou ilize	lot C) urs for on urs rs:
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo Drinking wat Unit:5 Development	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta ogy in t cer and A	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage orgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waste ir/Gas purifications. Nanomaterials for Biological Applications medicines- Nanotechnology in the diagnostic application	Cs), C unctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 holicati trea 6	um d HJ-S hou ils f m i hou ilize	lot C) urs for on urs for on urs of nt- urs on
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo Drinking wat Unit:5 Development Studies: on	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al pollut ogy in t er and A	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waste ir/Gas purifications. Nanomaterials for Biological Applications medicines- Nanotechnology in the diagnostic application	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 blicati trea 6 form - em	hou ilize	lot C) urs for on urs for on urs of of on urs on on-
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo Drinking wat Unit:5 Development Studies: on injectables- o	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta ogy in t er and A	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj itus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waste ir/Gas purifications. Nanomaterials for Biological Applications medicines- Nanotechnology in the diagnostic application dosage forms such as tablets, capsules- suspension-c ic and aerosols, etc. Gold nanorods: Multifunctional	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 blicati trea 6 form - em	hou ilize	lot C) urs for on urs for on urs of of on urs on on-
photovoltaic (QD)-sensitiz solar cells, C Unit:2 Introduction electrochemic Batteries), Su Unit:3 Nanotechnolo Nanourea and Unit:4 Environment nanotechnolo Drinking wat Unit:5 Development Studies: on injectables- o	cells, Or zed solar urrent sta of ene cal ener ipercapad ogy in a d mixed f al polluta ogy in t er and A	ganic photovoltaic cells, Dye-sensitized solar cells (DSS cells (QD-SSC), Organic-inorganic hybrid bulk heteroj atus and future trends. Nanomaterials for Energy Storage rgy storage devices, Issues and challenges of r gy storage systems, Primary and secondary batter citor, Current status and future trends. Nanomaterials for Agricultural Applications agriculture-Precision farming, Smart delivery system fertilizers, Nanofertigation - Nanopesticides, Nanoseed. Nanomaterials for Environmental Applications ants in the air, water, soil, hazardous and toxic wastes he remediation of Pollution in industrial and waste ir/Gas purifications. Nanomaterials for Biological Applications medicines- Nanotechnology in the diagnostic application	Cs), Qunctio	Quant n (BI 6 ateria Lithiu 6 nofert 6 holicati trea 6 form - em 5 for	hou ilize	lot C) Irs for on Irs of nt- irs on on- cer

Ех	apert lectures, online seminars- webinars				
	Total Lecture hours	31 hours			
Bo	ook (s) for Study				
1	Handbook of Batteries, D. Linden Ed., 2 nd Edition, McGraw-Hill, New York, (1	.995).			
2					
	Inc., Publication, (2003).				
3	Nanotechnology: Applications in Energy, Shafiquzzaman Siddiquee, Gan Jet H	ong Melvin,			
and Md. Mizanur Rahman, Drug and Food, Springer, Cham, (2019).					
4	C. Kumar, Nanomaterials for Medical Diagnosis and Therapy, Wiley –VCH, UK	SA, (2007).			
5					
	Nanomaterials, McGraw-Hill New York, (2007).				
Bo	ook (s) for Reference				
1	Polymer Matrix Composites and Technology, Ru-Min Wang Shui-Rong 2	Zheng Yujun			
	Zheng, 1 st Edition, Woodhead Publishing, (2011).	0 5			
2	Nanoparticles Deliver RNAi Therapy, Materials Today, Martin C. Woodle	e, Patrick Y.			
	Lu,(2005).				
3					
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]					
1	https://nptel.ac.in/courses/113/106/113106093/				
2					
3					
4	https://nptel.ac.in/courses/112/107/112107283/				
Cou	urse Designed By Dr P. Sakthivel dar of e-mail sakthivel.p@b	ouc.edu.in			
	10 2010 BUSIC BUSIC				

ANTIMICROBIAL TESTING					
Name of	the Department	Nanoscience and Technology	Nanoscience and Technology		
	the Faculty Member i/c mplete Address with Phone ail	Dr P. Premasudha Assistant Professor Department of Nanoscience and Bharathiar University Coimbatore 641 046 Mobile: 9843620645 Email : premasudha@buc.edu.in			
	tra Department Course	Intra Department			
Duratio	of the Course	30 hours			
Eligibili	•	Microbiology / Biotechnology / /Botany / Zoology / Nanoscience			
	of Candidates to be Admitte	d 20			
	tion Procedure				
	ortunities:				
		oratory Technician for culture testing			
Learn to	suggest appropriate antibiotics				
	1 64 G				
	ctives of the Course are:				
	objectives of this course are t				
	understand the principles of a				
		hniques to evaluate the susceptibility of	a microbe to		
	erent antibiotics	Construction Construction			
	distinguish the range of activit	-	. • • • • •		
		es and limitations of two different susc	eptibility testing		
1	cedures	nimal inhibitory concentration and the	minimal		
	-	to the effectiveness of an antimicrobia			
Course		ical / Project / Internship	i uiug.		
Course		ical / 110jeet / internship			
Module	I Introduction and Occur	rence of Microorganisms	3 - hours		
mount	(Bacteria and Fungi)	rence of interoorgunishis	5 - 11041 5		
Module		nic Microorganisms	3- hours		
Module			3- hours		
Module		otic Resistant Microbes.	3- hours		
Module		ne Development of Antibiotic	3- hours		
	Resistant Microbes	-			
Module			3- hours		
Module	0		3- hours		
			3- hours		
Module		• • • • • • •	2 1		
Module Module Module			3- hours 3- hours		

edition, edition, S. tion,
edition, S. tion,
tion,
on,
tion, Tata
ethods of antibiotic
09). Antimicrobial
practices. Clinical
(

ORGANIC SOLAR CELLS: MATERIALS DESIGN AND DEVICE					
CHARACTERIZATION Name of the Department Nanoscience and Technology					
-	Dr. P. Sakthivel				
Name of the Faculty Member i/c	Professor				
With Complete Address with Phone	Department of Nanoscience and Tec	hnology			
and e-mail	Bharathiar University, 0422-428428, 9677560890				
Inter / Intra Department Course	Inter Department Course				
Duration of the Course	40 hours				
Eligibility	Chemistry, physics, Electronics, Nar Technology	oscience and			
Number of Candidates to be Admitted	20				
Registration Procedure					
Job Opportunities: Solar cell Companies					
The objectives of the Course are:					
The main objectives of this course are to:					
1 Differentiate between small molecules a					
2 Design conjugated small molecules and	macromolecules				
3 Tune the HOMO, LUMO and band gap	energy levels by theoretically				
4 Identification of suitable donor and acce	eptors for BHJ device fabrications				
5 Solar energy harvesting devices fabricat	tion				
Course Content Lecture					
Module 1 Introduction and overview of utilization	of alternative energy sources and	3 hours			
Module 2Principles of energy conver second laws, the Carnot cyc	sion: thermodynamic first and	3 hours			
	y and spectrum, global solar	3 hours			
	Nonrenewable energy resources	3 hours			
	es of Organic Solar cells materials	4 hours			
Module 6Working principles of BHJand Fullerene ACCEPTOR	Devices with D-A Type DONOR S	4 hours			
Module 7 Designing DSSCs and conju- materials and energy levels	ugated Small/polymer solar cell	5 hours			
Module 8 Fullerene Acceptors Synthe	esis and Structural Studies	5 hours			
Module 9 Overview of perovskite sola		5 hours			
Module 10Organic solar cells device faApplications	abrication techniques and	5 hours			
Book(s) for Study					
1 Wolfgang Tress, Organic Solar Cells, Theory, Experiment, and Device Simulation, Springer, Cham, 2014.					
2 S. Hegedus and A. Luque, "Handbook o					
3 Martin A. Green "Solar Cells: Operating					
Applications"(Prentice-Hall, Englewood Cliffs, N.J., 1982)ISBN: 0-85823-580-3.					
Book (s) for Reference					

1	Christoph Brabec, Ullrich Scherf, Vladimir Dyakonov, Organic Photovoltaics, Wiley-VCH, 2014
2	Modest Voronov, Organic Solar Cells: Advances in Research and Applications, NOVA Science Publisher, 2017.
Re	elated Online Contents
1	Prof. Soumitra Satpathi, Dept of Physics, IIT Roorkee, Solar Photovoltaics Fundamentals, Technology And Applications, https://nptel.ac.in/courses/115/107/115107116/
2	G. Chidichimo and L. Filippelli, Organic Solar Cells: Problems and Perspectives, Review
	Article Open Access, 2010 International Journal of Photoenergy, Article ID 123534 11
	pages

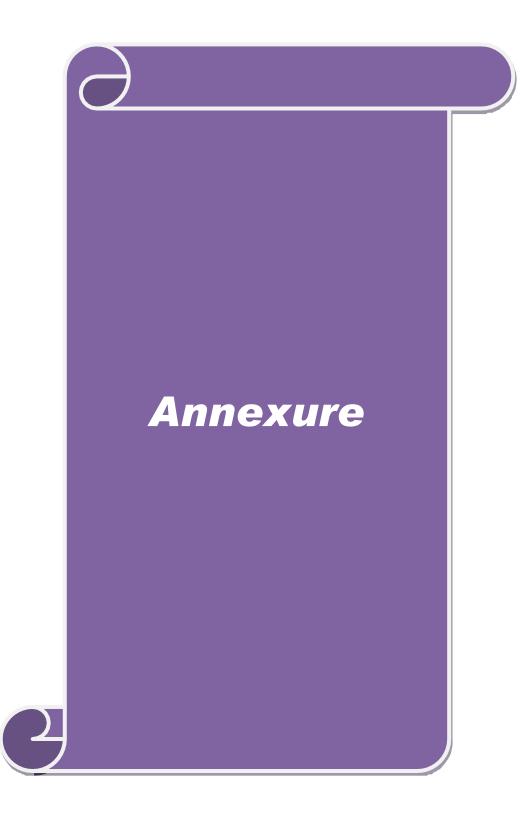
P	RACTICA	L METHODS IN NANOTO	XICOLOGY AND MOLECULAR GE	ENETICS		
Na	me of the	Department	Nanoscience and Technology			
			Dr. P. P. Vijaya			
			Professor			
Na	me of the l	Faculty Member i/c	Department of Nanoscience and Tecl	hnology		
		ete Address with Phone	Bharathiar University	80		
	d e-mail		Coimbatore – 641 046			
			Phone: +91 9840868328			
			E-mail: vijayaparthasarathy@buc.eo	du.in		
Int	er / Intra	Department Course	Inter and Intra Department Course			
		he Course	40 hours			
	gibility		B.Sc.,			
		andidates to be Admitted	25 - 50			
		Procedure	Online			
			r Research Institute (CLRI) and CSIR-	Central		
		h Institute (CDRI) Laboratorie		_ ,		
	0	, , , , , , , , , , , , , , , , , , , ,				
Th	e obiective	es of the Course are:				
	•	ectives of this course are to:	ககழகம்			
			of Malagular Dialogy and bioghamistr	to design		
1	-		e of Molecular Biology and biochemistry	to design		
-	experim					
2		and the DNA isolation and am				
3	To use t	he techniques and skills neces	sary for isolation of DNA and their furthe	er analysis.		
4		sic knowledge about recombir				
5	Ũ	hish the basic techniques in ge	netic engineering			
Co	urse Conte	ent Lecture / √Practica	al / Project / Internship			
		·				
Mo	odule 1	DNA Isolation - Isolation plant cell.	of genomic DNA from bacteria and	3 hours		
Mo	odule 2	adopting different methods.		3 hours		
Mo	odule 3	, plasmid curing (acridine o		3 hours		
Mo	odule 4	Hybridization.	sis: DNA: Southern and Northern	3 hours		
Module 5DNA Sequence Analysis (e.g Sangers Method), Automated Sequencing, RFLP and RAPD.3				3 hours		
Module 6Protein: Western Blotting, ELISA and its variations3				3 hours		
			ations- Plant (Allium cepa and Human and abnormal karyotypes.	3 hours		
Mo	odule 8	Preparation of E coli com	petent cells and their transformation piotic resistance to the host cells	3 hours		
Mo	odule 9		omic/plasmid DNA (E.coli)	3 hours		
	-					
	odule 10	Competent cell preparation.	Preparation of competent cells in	3 hours		

Book(s) for Study							
1	Molecular Biology of the Cell: Alberts et al., 6 th Edition, Garland Publications, 2015.						
2	Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology",						
	4th Edition, Greene Publishing Associates, NY, 2008						
3	Strachan T and Read A P, Human molecular genetics, 3rd Edition Wiley Bios, 2006.						
Bo	ook(s) for reference						
1	Old RW, Primrose SB, "Principles of Gene Manipulation, An Introduction To Genetic						
	Engineering", 3rd Edition, Blackwell Science Publications, 2009.						
2	Jane K. Setlow, Genetic Engineering: Principles and Methods, Volume 27, Springer						
	Science & Business Media, 2006						
Re	elated Online Contents						
1	Essentials of Molecular Biology, Fourth Edition (2012) by V. Malathi., Pearson Education						
	India.						
2	Microbial Genetics (2012) by K. Chaudhuri, The Energy and Resources Institute,						
	TERI.						
3	Genetics – A Molecular Approach, 6th Edition (2013) by Bahman Yazdi Samadi, Mostafa						
	Valizadeh, University of Tehran Press.						
	A DECEMBER OF THE OWNER OF						

1	Name of the Course	Solar Panel Installation Technician			
2	Name of the Department	Nanoscience and technology			
	Name of the Faculty Member	Dr. C. Viswanathan Associate Professor			
3	Member				
		Department of Nanoscience and Technology			
4	Inter/Intre Department	Bharathiar University			
4	Inter/Intra Department Objectives of the Course	Inter Department The prime objective of the course is to produce			
5	objectives of the course	highly skilled and technically qualified professional solar panel installers and also to guide them in career opportunities in solar power industry.			
6	Topics to be Coveredi.Understand the basics of electricity and solar energyii.Understand the site and equipment related requirements for solar PV installationiii.Design a solar PV system as per customer's requirements as well as appropriate codes and standardsiv.Install a solar PV system based on the relevant designsv.Maintain a solar PV system and identify and troubleshoot problemsvi.Ensure safety while installation and operation vii.vii.Undertake project management for installation				
7	Duration of the Course	1 year			
8	Eligibility	B.Sc, in Physics or Electronics			
9	Registration				
10	Description of the Course	 Developing the knowledge basis of the trainee by covering various aspects of solar PV feasibility studies, basics of design, installation, operation and maintenance of solar panels Providing updated teaching materials Covering the technical and other capacity requirements for the solar industry Providing hands-on training in fabrication, design and installation of solar panels Exploring the local and global sectors from the experts 			
11	Job Opportunities	Solar panel Installation Technician at various electronic sector			
12	Number of Candidates	15 No's per year			
13	Course Fee				

Inter / Intra Department Course Inter Department Duration of the Course 3-6 month/45 hours Eligibility M.Sc. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) Both Regular and Online Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: The main objectives of this course are to: The nobelectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 2 Study of conduction, Active and transporting layers in OSC Device The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 4 hours systems and stability Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR		ORGANIC SOLAR CE	CLLS DEVICE FABRICATION			
Name of the Faculty Member i/c With Complete Address with Phone and e-mail Dr P. Sakthivel Inter / Intra Department Course Inter Department Duration of the Course 3 - 6 month/45 hours Eligibility M.S.C. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies fif Yes, Full Address of the Company Address , Name of the Contact Person, Phone, e-mail etc.) As per University Norms Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: 1 Role of conjugated organic small molecules and macromolecules 3 2 Study of conduction, Active and transporting layers in OSC Device 3 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 4 Choice of solvents, additives, and acceptor 2 5 Device characterizations molecules, conjugated small and polymers molecules, conjugated small and polymers molecules, conjugated small and polymers 4 4 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours fabrications Module 4 Prinmary requirements for choosing ACCEPTOR and study of st	Name of the	Department	Nanoscience and Technology			
With Complete Address with Phone and e-mail Dr P. Sakthivel Inter / Intra Department Course Inter Department Duration of the Course 3- 6 month/45 hours Eligibility M.Sc. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: Inter main objectives of the Course are to: 1 Role of conjugated organic small molecules and macromolecules 2 2 Study of conduction, Active and transporting layers in OSC Device 3 3 The power conversion efficiency of OSC Device and JSC, FF, and FF Coloice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 4 hours systems and stability Module 2 Fundamentals of Organic solar cells: Overview of organic 4 hours systems and stability Module 3 Detailed study of Weak DONOR Alternate double						
Inter / Intra Department Course Inter Department Duration of the Course 3-6 month/45 hours Eligibility M.Sc. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) Both Regular and Online Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: The main objectives of this course are to: The nobelectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 2 Study of conduction, Active and transporting layers in OSC Device The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 4 hours systems and stability Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR	With Comple	ete Address with Phone	Dr P. Sakthivel			
Duration of the Course 3- 6 month/ 45 hours Eligibility M.Sc. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies Both Regular and Online (f) Yes, Full Address of the Common yay Address , Name of the Contact Person, Phone, e-mail etc.) Registration Procedure As per University Norms Job Opportunities: Solar Companies Imain objectives of this course are to: The main objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations 2 Module 1 Primer of renewable energy: basics and production of energy with different resources 2 Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 Module 4 Primary requirem	and e-mail					
Eligibility M.Sc. First/Second years: Physics, Chemistry, Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) Both Regular and Online Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are c: The objectives of the Course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 2 Study of conduction, Active and acceptor 2 Module 1 Primer of renewable energy: basics and production of energy with different resources 2 Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours Module 4 Primary requirements for choosing ACCEPTOR and study of LUMO energy levels 5 hours	Inter / Intra	Department Course	Inter Department			
Electronics, Nanoscience Number of Candidates to be Admitted 20 Mode of the Course Both Regular and Online Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) Both Regular and Online Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: The main objectives of the Course are to: The noi objectives of the Course are to: 1 Role of conjugated organic small molecules and macromolecules 2 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 5 Device characterizations 2 Course Content Lecture Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours molecules, conjugated small and polymers Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours and active layers Module 4 Primary requirements for choosing ACCEPTOR and study of fabrications 5 hours fabrications	Duration of t	the Course	3- 6 month/ 45 hours			
Mode of the Course Both Regular and Online Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) Both Regular and Online Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are: The objectives of the Course are to: I 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of fabrications 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications	Eligibility			s, Chemistry,		
Collaboration if any with Companies (if Yes, Full Address of the Company Address, Name of the Contact Person, Phone, e-mail etc.) As per University Norms Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are: The main objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations 2 Module 1 Primer of renewable energy: basics and production of energy with different resources 2 Module 2 Fundamentals of Organic solar cells: Overview of organic an onlecules, conjugated small and polymers 4 Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 Module 4 Primary requirements for choosing ACCEPTOR and study of shours and active layers 5 Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 4 Primary requirements for choosing ACCEPTOR and their review on power conversion efficiency 5 hours	Number of C	Candidates to be Admitted	20			
(if Yes, Full Address of the Company Address , Name of the Contact Person, Phone, e-mail etc.) As per University Norms Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are: The main objectives of this course are to: I 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability Module 4 Primary requirements for choosing ACCEPTOR and study of LUMO energy levels 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications 5 hours <	Mode of the	Course	Both Regular and Online			
Address , Name of the Contact Person, Phone, e-mail etc.) Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are: The objectives of the Course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours and active layers and active layers 5 hours fabrications Module 5 Characteristic behaviors of Electrodes, transporting layers, 5 hours fabrications 5 hours fabrications Module 8 Tandem organic solar cell device fabrication and their review on power conversion efficiency 5 hours fabrications Module 8 Tandem organic solar cells device fabrication and stability 5 hours fabrications	Collaboratio	n if any with Companies				
Phone, e-mail etc.) As per University Norms Registration Procedur As per University Norms Job Opportunities: Solar Companies The objectives of the Course are to: The nain objectives of the course are to: The nain objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours and active layers 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 7 Bulk heterojunction solar cells device fabrications and their review on power conversion efficiency 5 hours merits and demer						
Registration Procedure As per University Norms Job Opportunities: Solar Companies The objectives of the Course are: The main objectives of this course are to: Image: Course Course Course Conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor Course Content 5 Device characterizations Course Content Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours and active layers 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 7 Bulk heterojunction solar cells device fabrications and their review on power conversion efficiency 5 hours Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and their study 5 hours Module 10 Characterizations and OSC septication and stability 5 hours						
Job Opportunities: Solar Companies The objectives of the Course are: The main objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours and active layers Module 5 Characteristic behaviors of Electrodes, transporting layers, 5 hours fabrications Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency Module 8 Tandem organic solar cells device fabrication and their freview on power conversion efficiency Module 9 Inverted organic solar cells device fabrication and stability 5 hours study Module 10 Charac		,				
The objectives of the Course are: The main objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources Module 2 Fundamentals of Organic solar cells: Overview of organic Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability Module 4 Primary requirements for choosing ACCEPTOR and study of functions and active layers Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency Module 8 Tandem organic solar cells device fabrication and their freview on power conversion efficiency Module 9 Inverted organic solar cells device fabrication and their shours study Module 10 Characterizations and OSCs Applications 5 hours </td <td><u> </u></td> <td></td> <td>As per University Norms</td> <td></td>	<u> </u>		As per University Norms			
The main objectives of this course are to: 1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content 1 Primer of renewable energy: basics and production of energy with different resources Module 1 Primer of renewable energy: basics and production of energy with different resources Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours LUMO energy levels Study of mono layer, bilayer Organic Solar cells device fabrications and ctive layers Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency Module 7 Bulk heterojunction solar cell device fabrication and stability Module 8 Tandem organic solar cells device fabrication and their shours merits and demerits Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hour						
1 Role of conjugated organic small molecules and macromolecules 2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content I Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours LUMO energy levels 5 hours and active layers Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours fabrications Module 6 Study of mono layer, bilayer Organic Solar cells device 5 hours merits and demerits Module 7 Bulk heterojunction solar cell device fabrication and their review on power conversion efficiency 5 hours Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Mod						
2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content 1 Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic and energy molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours Module 4 Primary requirements for choosing ACCEPTOR and study of the systems and active layers 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency 5 hours Module 7 Bulk heterojunction solar cell device fabrication and their merits and demerits 5 hours Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and stability study	The main obj	ectives of this course are to:				
2 Study of conduction, Active and transporting layers in OSC Device 3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content 1 Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic and energy molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours Module 4 Primary requirements for choosing ACCEPTOR and study of the systems and active layers 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency 5 hours Module 7 Bulk heterojunction solar cell device fabrication and their merits and demerits 5 hours Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and stability study	1 Role of	conjugated organic small mol	ecules and macromolecules			
3 The power conversion efficiency of OSC Device and JSC, FF, and FF 4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours 5 hours LUMO energy levels Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency 5 hours Module 7 Bulk heterojunction solar cell device fabrication and their merits and demerits 5 hours Module 8 Tandem organic solar cells device fabrication and stability study 5 hours Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hours <t< td=""><td></td><td></td><td></td><td></td></t<>						
4 Choice of solvents, additives, and acceptor 5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of tube systems and stability 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency 5 hours Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hours Book (s) for Study E F	-					
5 Device characterizations Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic 4 hours molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 5 hours Module 4 Primary requirements for choosing ACCEPTOR and study of 5 hours 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device 5 hours Module 7 Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency 5 hours Module 8 Tandem organic solar cells device fabrication and stability 5 hours Module 9 Inverted organic solar cells device fabrication and stability 5 hours Module 10 Characterizations and OSCs Applications 5 hours	_					
Course Content Lecture / Practical / Project / Internship Module 1 Primer of renewable energy: basics and production of energy with different resources 2 hours Module 2 Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers 4 hours Module 3 Detailed study of Weak DONOR Alternate double bond systems and stability 4 hours Module 4 Primary requirements for choosing ACCEPTOR and study of LUMO energy levels 5 hours Module 5 Characteristic behaviors of Electrodes, transporting layers, and active layers 5 hours Module 6 Study of mono layer, bilayer Organic Solar cells device fabrications and their review on power conversion efficiency 5 hours Module 7 Bulk heterojunction solar cell device fabrication and their study 5 hours Module 8 Tandem organic solar cells device fabrication and their study 5 hours Module 9 Inverted organic solar cells device fabrication and stability 5 hours Module 10 Characterizations and OSCs Applications 5 hours			eptor			
Module 1Primer of renewable energy: basics and production of energy with different resources2 hoursModule 2Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymers4 hoursModule 3Detailed study of Weak DONOR Alternate double bond systems and stability4 hoursModule 4Primary requirements for choosing ACCEPTOR and study of LUMO energy levels5 hoursModule 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their merits and demerits5 hoursModule 8Tandem organic solar cells device fabrication and stability5 hoursModule 9Inverted organic solar cells device fabrication and stability5 hoursModule 10Characterizations and OSCs Applications5 hours						
with different resourcesModule 2Fundamentals of Organic solar cells: Overview of organic molecules, conjugated small and polymersModule 3Detailed study of Weak DONOR Alternate double bond systems and stability4 hoursModule 4Primary requirements for choosing ACCEPTOR and study of LUMO energy levels5 hoursModule 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their merits and demerits5 hoursModule 8Tandem organic solar cells device fabrication and stability study5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hours	Course Cont	ent Lecture / Practical	/ Project / Internship			
molecules, conjugated small and polymersModule 3Detailed study of Weak DONOR Alternate double bond systems and stability4 hoursModule 4Primary requirements for choosing ACCEPTOR and study of LUMO energy levels5 hoursModule 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their merits and demerits5 hoursModule 8Tandem organic solar cells device fabrication and their merits and demerits5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hoursBook (s) for StudyStudy5	Module 1	- The	: basics and production of energy	2 hours		
Module 3Detailed study of Weak DONOR Alternate double bond systems and stability4 hoursModule 4Primary requirements for choosing ACCEPTOR and study of LUMO energy levels5 hoursModule 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency5 hoursModule 8Tandem organic solar cells device fabrication and their merits and demerits5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hours	Module 2	-		4 hours		
Module 4Primary requirements for choosing ACCEPTOR and study of LUMO energy levels5 hoursModule 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency5 hoursModule 8Tandem organic solar cells device fabrication and their merits and demerits5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hours	Module 3	Detailed study of Weak DC		4 hours		
Module 5Characteristic behaviors of Electrodes, transporting layers, and active layers5 hoursModule 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency5 hoursModule 8Tandem organic solar cells device fabrication and their merits and demerits5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hoursBook (s) for StudyStudy	Module 4	Primary requirements for cl	hoosing ACCEPTOR and study of	5 hours		
Module 6Study of mono layer, bilayer Organic Solar cells device fabrications5 hoursModule 7Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency5 hoursModule 8Tandem organic solar cells device fabrication and their merits and demerits5 hoursModule 9Inverted organic solar cells device fabrication and stability study5 hoursModule 10Characterizations and OSCs Applications5 hoursBook (s) for StudyStudy5	Module 5	Characteristic behaviors of	Electrodes, transporting layers,	5 hours		
Module 7 Bulk heterojunction solar cell device fabrications and their review on power conversion efficiency 5 hours Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hours Book (s) for Study Study 5 hours	Module 6	Study of mono layer, bilaye	er Organic Solar cells device	5 hours		
Module 8 Tandem organic solar cells device fabrication and their merits and demerits 5 hours Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hours Book (s) for Study Study Study	Module 7 Bulk heterojunction solar ce			5 hours		
Module 9 Inverted organic solar cells device fabrication and stability study 5 hours Module 10 Characterizations and OSCs Applications 5 hours Book (s) for Study Study	Module 8 Tandem organic solar cells			5 hours		
Module 10 Characterizations and OSCs Applications 5 hours Book (s) for Study 5	Module 9 Inverted organic solar cells		device fabrication and stability	5 hours		
	Module 10	· · · · · · · · · · · · · · · · · · ·	s Applications	5 hours		
	Book (s) for	l Study				
1 Christoph Brabec, Vladimir Dyakonow, and Ullrich Scherf, Organic Photovoltaics:			and Illrich Scherf Organic Photow	oltaics.		

	Materials, device physics, and manufacturing technology, Wiley VCH, 2009						
2	Brutting W, Physics of Organic Semiconductors, Wiley VCH, 2005						
Bo	ook (s) for Reference						
1	Hadziioannou G, Malliarass G. G, Semiconducting Polymers: Chemistry, Physics, and						
	Engineering, Wiley VCH, 2007						
2	Klauk H, Organic Electronics: Materials, Manufacturing, and Applications, Wiley VCH,						
	2006						
Re	elated Online Contents						
1	Prof. Soumitra Satpathi, Dept of Physics, IIT Roorkee, Solar Photovoltaics Fundamentals,						
	Technology And Applications, https://nptel.ac.in/courses/115/107/115107116/						
2	G. Chidichimo and L. Filippelli, Organic Solar Cells: Problems and Perspectives, Review						
	Article Open Access, 2010 International Journal of Photoenergy, Article ID 123534 11						
	pages						


NA	NOTOXICOLOGY – RISK	ASSESSMENT AND MANAGEM	IENT		
Name of the	Department	Nanoscience and Technology			
Name of the With Comple and e-mail	Faculty Member i/c ete Address with Phone	Dr P. P. Vijaya Professor Department of Nanoscience and Technology Bharathiar University Coimbatore – 641 046 Phone: +91 9840868328 E-mail: vijayaparthasarathy@buc.edu.in			
	Department Course	Intra Department Course			
Duration of t Eligibility	the Course	6 months I OR II M.Sc.,			
	Candidates to be Admitted	25-50			
Mode of the		✓Regular / Online / Both Regul	ar and Online		
	n if any with Companies	• Regular / Online / Dour Regul			
(if Yes, Full A	Address of the Company ne of the Contact Person,	Nil			
Registration Job Opportuni		Online			
 Marie Curie Early Stage Researcher –Ph.D., Studentship Toxicity testing Laboratories in CSIR-Central Leather Research Institute (CLRI), CSIR-Central Drug Research Institute (CDRI) and Universities. Job Opportunities in Pharmaceutical companies. The objectives of the Course are: The main objectives of this course are to: 1 To learn the basic importance and regulations of Nanotoxicology in nanotechnology fields. 2 To understand toxicity produced by nanostructures and methods to reduce their toxicity. 3 To provide knowledge on social impact of nanoindustry.					
4 To desig	gn and conduct experiments, a	s well as to analyze the results.			
5 To unde	erstand the socio-ethical respon	nsibility			
Course Cont	ent	ical / Project / Internship			
Module 1Introduction – Definition of terms-Toxicity-Hazards and hazard types and assessment of risk.6 hours					
Module 2Concept of Nanotoxicology - Laboratory rodent studies - Ecotoxicologic studies - Methodology for Nanotoxicology - in vitro and in vivo toxicity testing6 hours					
Module 3	Mechanism of nanosize pa species meditated NSP Nanoparticles and Living Health Effects	article toxicity - Reactive oxygen toxicity - Interactions between g Organisms: Mechanisms and	6 hours		
Module 4	Interactions of Nanopartic	les with Cells and their Cellular	6 hours		

	Nanotoxicology - Cytotoxicity of Ultrafine Particles - Cytotoxicity and Potential Mechanism of Nanomaterials- Immunotoxicity					
Module 5	Nanopollution – Nanomaterials in Environment - Toxicology of Airborne - Manufactured nanomaterials in the environment- Physicochemical characteristics of nanomaterials.	6 hours				
Module 6	Biological Activities of Nanoparticles - nanoparticles interaction with biological membrane-Entry routes into the human body- Disposition of NSPs in the respiratory	6 hours				
Module 7	Portals of entry and target tissue – Risk assessment – Ethical – Legal and Social Implications	6 hours				
Module 8	Nanoparticle Toxicology and Ecotoxicology, The Role of Oxidative Stress – Development of Test Protocols for Nanomaterials – Regulation of Engineered Nanomaterials.	6 hours				
Module 9	NanotechnologicalRisks–UnderstandingofNanotechnology'sSocialImpacts-Nanotechnology in theMedia.EducatingUndergraduateNanotechnologyOpportunities–HumanResourcesNanotechnology–HumanResources	6 hours				
Module 10	Ethical Issues in Nanoscience and Nanotechnology – Ethics & Law in a New Frontier- An Exploration of Patent Matters Associated with Nanotechnology	6 hours				
Book(s) for s		1 1 1 2 1				
Assessm	n, S.S. Guterres, O.L. Alves, Nanotoxicology: Materials, Met nents, Springer, Newyork, 2014.					
	ki, Y. Yoshioka, A. Holian, Biological Effects of Fibrous ces, Springer, Japan, 2016.	and Particulate				
	atti, S. Montanari, Case Studies in Nanotoxicology and Parti ic Press, UK, 2015.	cle Toxicology,				
Book(s) for	reference					
	A. Monteiro-Riviere, C. Lang Tran, Nanotoxicology: Pr dicine, Second edition, CRC Press, Taylor and Franscis, Boca Rato					
	G. Ramachandran, Assessing Nanoparticle Risks to Human Health, William Andrew, Elsevier, USA, 2011.					
3 J. Njugu Polymer						
Dolotad Ori	ina Contanta					
	ine Contents pedia of Toxicology (Third Edition), 2014.					
2 Current		Issues, 2020				
3 Toxicol						

Course code		L	Т	Р	С			
Core		REGENERATIVE MEDICINE		0	0	4		
Core		This course is unique and innovative provides	4 0		U	4		
Pre-requisite		exposure to the students in the recent advances in medical science. The students are expected to have strong knowledge in material science and knowledge in biological systems.			2020 -2021			
Course Object	ives:							
basic biolo	ogy of st le course	p provide an in-depth knowledge of the field of regenerat em cells to therapeutic applications. e aimed to provide the translational knowledge of medic						
Expected Cou	rse Outo	comes:						
After the com	pletion c	of the course, the student will have the following capability	ties:					
1 Describe	regenera	tive medicine and their specific characteristics.			K	Х		
2 Describe tissue eng		of applications to replace damaged or destroyed cells in g.	cludin	g	K	X		
3 Account	for reger	nerative medicine applications to human diseases.			K	Х		
4 Account	for and e	valuate current theories, methods and techniques within	the		K	X		
		ir practical execution and application.						
orally and	l in writi					X		
K1 - Rememb	er; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; 1	K6 - (Create)			
Unit:1Basics of Regenerative Medicine12 ho								
		ne: Introduction- Bioreactors-Key Features-Controlled g tissues-Bioreactor based products.	cultu					
Unit:2		Nanomaterials for Regenerative medicine			hou			
		anocomposites for Regenerative medicine: Perspect						
regenerative m		ite 3D scaffolds-Drug free organ replacement-Carbon	basec					
Unit:3		Surface Modification for Cell Interaction			hou			
	•	cal modified biomaterials for cell adhesion: Gene						
	-	the nanostructured surface-Self assembled monola ctive hydrogels: Introduction-Methods of preparation	•		-	•		
	, 0		JII-CII	ennce	u a	liu		
Physical reticulation process-Properties-Major issues on injectable process.Unit:4Cellular Therapeutics12 hours								
Introduction to stem cells-Molecular and cellular bases of tissue and organ development-								
Therapeutic uses of stem cells-Molecular bases of dieases-Bio-Artificial organs.								
Unit:5 Tissue Therapy 12 ho					hou	rs		
Engineering of small and large diameter blood vessels-Cardiac tissue-Intracorporeal kidney								
support-Genito urinary system-Reproductive system-Tissue therapy implications of regenerative medicine-Current issues and challenges.								
Unit:6		Contemporary Issues		2	hou	rs		
Current challen domain.	ges and	regulatory issues will be addressed by the experts in the	respec	tive				

				Total Lectu	ure hours	62 hours	
Te	ext Books						
1		Principles of Regenerative Medicine, Anthony Atala, Robert Lanza, Tony Mikos, Robert					
			n, 2018, ISBN: 9780128098806.				
2	Nanomate	rials fo	r regenerative medicine, Tekinay,	Ayse, Spring	ger, 2019, ISBN	N: 978-3-030-	
	31202-2.						
Re	eference Bo	oks					
1	Foundation	n of Re	generative Medicine, Anthony Ata	la, 1 rd editio	n, 2009, ISBN	:	
	97801237			,	, ,		
2	Advances	in Res	generative Medicine: Role of Nan	otechnology	and Enginee	ring Principles.	
			d Shastri, George Altankov, And		-		
	2007.	1 1 1 4 5 6		icus Lonaio		<i>y</i> ior 0,000 r,	
_		~					
R	elated Onlin	ne Cor	tents [MOOC, SWAYAM, NPT]	EL, Website	es etc.]		
1	https://www.ncbi.nlm.nih.gov						
2	2 <u>https://onlinelibrary.wiley.com</u>						
Cou	urse Design	ed By	Dr A. M. Ballamuragan	e-mail	balamuruga	n@buc.edu.in	
230			= =				

BHARATHIAR UNIVERSITY:: COIMBATORE 641046 DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY M.Sc., NANOSCIENCE AND TECHNOLOGY (For the candidates admitted from the academic year 2022-23 onwards) Overview, Curriculum and Syllabus

Duration: 2 Years

Level: Post-Graduation

Type: PG. Degree

Eligibility: Any undergraduate Science Degree recognized by UGC

VISION: To achieve excellence in the field of Nanoscience and Technology through academic and research programs and to participate in the interdisciplinary programs offered in the University.

MISSION: As a Department, We are committed to,

- Provide knowledge and skill in Nanoscience and Technology through post-graduate and doctoral programs.
- Undertake research in emerging areas of physical, chemical and biological sciences with Nanoscience and Technology and transform the findings for the benefit of the society.
- Solve the environmental issues through the post graduate and research programs.
- Provide required knowledge in physical, chemical and biological sciences to understand Nanoscience and Technology for research.

Career Opportunities: M.Sc. Nanoscience and Technology graduates have plethora job opportunities in the following fields;

- Research Scientist and formulation scientist
- Nanomaterial Product developer
- Government agencies for regulatory monitoring
- Patent examiner
- ➢ Entrepreneurship
- Consultancy organizations in pharmaceuticals, Energy, Material Science, Medical, Agriculture, Environment Protection.
- > Job in Scientific Research Organizations.
- > Enroll for higher degree through research in India or abroad
- ➢ Healthcare industry
- > Teachers Recruitment Board (TRB) Tamil Nadu for Arts and Science Colleges.