M. Sc. Nanoscience & Technology

Syllabus

UNIVERSITY DEPARTMENT

Program Code: NSTA

2021 – 2022 onwards

BHARATHIAR UNIVERSITY

(A State University, Accredited with "A" Grade by NAAC, Ranked 13th among Indian Universities by MHRD-NIRF, World Ranking: Times -801-1000,Shanghai -901-1000, URAP - 982)

Coimbatore - 641 046, Tamil Nadu, India

Program Educational Objectives (PEOs)

The M. Sc. Nanoscience and Technology program describe accomplishments that graduates are expected to attain within five to seven years after graduation.

- **PEO1** Outshine in academics and research in different motifs of Nanoscience and Nanotechnology through post graduate education.
- **PEO2** Solid foundation in their respective core subjects such as physics, chemistry and biology in addition to nanoscience and technology.
- **PEO3** In-depth knowledge in synthesis and characterization of novel nanomaterials with multiple applications.
- **PEO4** Good theoretical and practical knowledge so as to comprehend, analyze, design, and create products and solutions for the real life problems.
- **PEO5** Professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address energy, environmental and biomedical applications.
- **PEO6** Academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career.
- **PEO7** Interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

தந்து இந்தப்பாரை காடா EV பாத்திட வே

Program Specific	Outcomes (PSOs)
-------------------------	------------------------

After the successful completion of M. Sc. Nanoscience and Technology program, the students are expected to

PSO1	Understand and apply principles of physics, chemistry and engineering for understanding the scientific phenomenon in nano domain.
PSO2	Understand and apply mathematical techniques for describing and deeper understanding of nano systems.
PSO3	Understand and apply quantum mechanical methods for particles in various physical systems and processes.
PSO4	Understand and apply inter-disciplinary concepts and computational simulation for understanding and describing the natural phenomenon.
PSO5	Understand and apply principles of quantum mechanics for understanding the nano systems in quantum realm.
PSO6	Provide exposure in various specialization of Nanotechnology.
PSO7	Provide exposure to advanced experimental/theoretical methods for measurement, observation, and fundamental understanding of phenomenon at nanoscale and nanosystems.
PSO8	Engage in research and life-long learning to adapt to changing environment.
PSO9	Having adaptive thinking and adaptability in relation to environmental context and sustainable development.
PSO10	Having a clear understanding of professional and ethical responsibility.
	EDUCATE TO ELEVATE

Program Outcomes (POs)								
On succe	On successful completion of the M. Sc. Nanoscience and Technology program							
PO1	Demonstrate knowledge on the physics/chemistry/biotechnology and basics of nanoscale science and technology for their multifunctional applications.							
PO2	Demonstrate ability to synthesis and characterize the materials in general and also nanomaterials.							
PO3	Project their skill in lithography and nanofabrication.							
PO4	Having expertise in processing of nanomaterials, MEMS and bio MEMS as per needs and specifications.							
PO5	Demonstrate an ability to visualize and work on laboratory and multidisciplinary tasks including material science, physics, chemistry and nanobiotechnology.							
PO6	Demonstrate skills to use synthesis, processing and imaging equipments to analyze samples.							
PO7	Able to propagate their knowledge to address problems of social relevance such as energy, environment and medicine through their specific electives.							
PO8	Understanding the impact of nanomaterials on the society including environment, health and ecosystem.							
PO9	Able to plan and execute their own innovative ideas in the form of projects, product design and development.							
PO10	Develop confidence for self-education and ability for life-long learning.							
	EDUCATE TO ELEVATE							

BHARATHIAR UNIVERSITY:: COIMBATORE 641 046 M. Sc. Nanoscience and Technology Curriculum (University Department)

(For the students admitted during the academic year 2021 - 22 onwards)

Course	Title of the Course	Credite	Н	ours	Maximum Marks			
Code			Theory	Practical	CIA	ESE	Total	
	F	IRST SEN	IESTER					
13A	Physics of Nanomaterials	4	4	-	50	50	100	
13B	Chemistry of Nanomaterials	4	4	-	50	50	100	
13C	Biology for Nanotehnology	4	4	-	50	50	100	
13D	Properties of Materials	4	4	-	50	50	100	
1EA	Computational Methods	4	4	_	50	50	100	
1EB	Electronic Devices			-			100	
13P	Practical-I	4	0.5.	6	50	50	100	
1GS	Introduction to Nanoscience	2	2	0-	25	25	50	
	Total	26	22	6			650	
	SE	COND SE	MESTER				050	
23A	Synthesis of Nanomaterials	4	4		50	50	100	
22D	Characterization of	My Son		8 2	50	50	100	
250	Nanom <mark>aterials</mark>	40	4		30	50	100	
23C	Micro and Nanofabrications	4	4	191	50	50	100	
23D	Genetics and	4	4	19	<mark>50</mark>	50	100	
	Nanoolotechnology	and the	300					
2EA	Nanophotonics	.0.						
	Nanomagnetic Materials	4	4	$I \rightarrow \langle$	50	50	100	
2EB	and Devices	A D	ing		0			
23P	Practical-II	4	-	6	50	50	100	
265	Applications of	2	2		25	25	50	
205	Nanotechnology	2	2		23	23	30	
	Total	26	22	6			650	
	Jos T	HIRD SEN	MESTER	- 81				
33A	Nanotechnology in Health	ப்பு 4ான	IT 84_U_I	19F	50	50	100	
	Science	CATE TO	HEVATE					
22D	Conversion and Storage		1		50	50	100	
330	Devices	4	4	-	50	50	100	
	Nanosensors and IoT Based						100	
33C	Sensors	4	4	-	50	50	100	
33D	Advances in	1	1		50	50	100	
550	Nanobiotechnology	4	4	-	30	30	100	
	Environmental							
3EA	Sustainability of							
	Nanomaterials	4	4	-	50	50	100	
3EB	Societal Impacts of							
	Nanotechnology							
37V	Summer Internship	2	-	-	50	-	50	
33P	Practical-III	4		6	50	50	100	

3GS	Introduction to Nanoscience and Technology	2	2	-	25	25	50				
	Total	28	22	6			700				
FOURTH SEMESTER											
13 Δ	IPR, Biosafety and Research	2			25	25	50				
чJЛ	Ethics	2			25	25	50				
47V	Project and Viva-Voce	8			100	100	200				
	Total	10					250				
Grand Total 90 2250											
	0	NLINEC	OURSES								
	Swayam, MOOC Course	2									
	etc.	Z	-	-							
	VALU	JE ADDE	D COURS	SES							
	Value Added Course – I	2	30	-	50	-	50				
	Value Added Course – II	2	30	C? - \	50	-	50				
	CER	FIFICATI	E COURS	ES							
	Certificate Course – I	4	30-40	2	100	-	100				
	Certificate Course – II	4	30-40	1-2	100	-	100				
The fina	l grading and ranking only the	scholastic	courses are	e counted. Ho	wever,	the awar	d of the				

degree, the completion of co-scholastic courses is mandatory.

Course code 13A	PHYSICS OF NANOSTRUCTURES	L	Τ	P	С							
Core		4	0	0	4							
Pre-requisite	Basic knowledge in general physics and	Sylla	bus	202 202	20 -							
Course Objectives	manemates.	VEIS.		202	41							
The main objectives of	this course are to:											
1. Learn the fundame	ental physical principles underlying the nanoscale materia	ls.										
2. To understand the	2. To understand the central concepts and principles in quantum mechanics for small systems.											
3. Bridging between macroscopic thermodynamics and microscopic statistical mechanics by												
using mathematical methods.												
4. To learn the fund	lamental principles underlying and connecting the stru	cture,	, proo	cessi	ng,							
properties, and per	formance of materials.											
	லைக்கழ்கா											
Expected Course Out	comes:											
Un the successful com	ipletion of the course, student will be able to:											
2 Apply the quant	um mechanical concents to the multidimensional nanosus	toma			.2							
2 Apply the qualit	concepts of statistical mechanics chemical kine	tice	and	ĸ								
thermodynamics	concepts of statistical incentances, enclinear kine	105 0	anu	K	.2							
4 Understand and	evaluate Crystal structure of materials and changes at nan	oscal	e.	K2.	.K5							
5 Understand the	fundamental science and engineering principles rel	evant	to	K	2							
materials												
K1 - Remember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	X6 - C	Create									
Unit:1	Quantum Mechanics - I		12	hou	rs							
About size scales – H	li <mark>story – Feynman scorecard - Schrödinger's cat –</mark> quant	um m	nechai	nics	in							
small system – Overv	iew of quantum effects and fluctuations in nanostructure	s - W	Vhy p	hysio	cs							
is different for small s	ystems – the uncertainty principle – probability amplitud	e and	the r	ales (10							
identical particles	- wave function – Dirac notation – Many Particle wa	ve lu	A to	is an	ia for							
calculating probability	amplitudes. Problems involving more than one electron	mon.	Au	101 10	01							
	unpitudes. I footens involving more unan one electron.											
Unit:2	Ouantum Mechanics - II		12	hou	rs							
Solution of the one-e	electron time independent Schrödinger equation for a c	onsta	nt po	tenti	al							
(Quantum confinemen	nt) – Electron tunneling through a potential barrier – Impo	ortant	result	ts wi	th							
1 D models – the hyd	rogen atom - Multielectron atoms - Approximate method	ls for	solvi	ng tł	he							
Schrodinger equation	- Chemical bonds Qualitative Approach - Eigen state	es for	inter	actir	ng							
systems and quasipart	icles.											
TL 4.2			10	1								
Unit:3	Statistical Mechanics and Chemical Kinetics		12 ho. al	hou	rs							
probability distribution	n for non interacting particles. Entropy and the Boltzm	s — 1. ann d	ne cla istrib	assic								
provability distribution for non-interacting particles – Entropy and the Boltzmann distribution : ions in a solution near an electrode – Fermi-Dirac distribution – The partition function – The												
partition function for	10ns in a solution near an electrode – Fermi-Dirac distribution – The partition function – The partition function for an ideal gas – Free energy pressure and entropy of an ideal gas from											
partition function –Th	ne Kramer's theory of reaction rates – Chemical kinetic	cs - I	Acid	– ba	se							
reactions as an examp	le of chemical equilibrium – The Michaelis – Menten re	lation	and	on-o	off							
rates in nano-bio in	teractions - Rate equations in small systems - The	rmod	ynam	ics	at							
Nanoscale.												

Unit:4 Solid State Physics - I 12											
Cr	Crystal structure – Periodic array of atoms – Lattice translation vectors – Basis and the crystal										
structure - Primitive lattice cell - Packing fraction - Fundamental types of lattices - Two and											
three dimensions -Index of crystal planes - Diffraction of waves by crystals - Bragg law -											
Re	eciprocal la	ttice vector - Diffraction conditions - Laue equation	ons – Brillouin zon	es –							
Re	Reciprocal lattice to sc, bcc and fcc lattices – Structure factor for bcc and fcc lattices – Atomic										
fo	rm factor.										
Uı	nit:5	Solid State Physics – II	12 h	ours							
Ne	early free el	ectron model - Origin of the energy gap - Magnitude o	f the energy gap – F	loch							
fu	nctions – I	Kronig-Penney model – Wave equation of electron in	n a periodic potenti	al –							
Re	estatement of	of the Bloch theorem – Crystal momentum of an electro	n –Kronig-Penney m	iodel							
in	reciprocal s	pace – Density of states for 1, 2 and 3 dimensional electron	on gas.								
	nit:6	Contemporary Issues	2 h	ours							
Ex	pert lecture	s, online seminars – webinars									
		Total Lectu	re hours 62 h	ours							
Bo	ook (s) for S	Study									
1	Introductio	on to Nanoscience, S. M. Lindsay, 1 st Edition, Oxford Un	iversity Press, 2010.								
2	Introduction	on to Solid State Physics, Charles Kittel, 8 th Edition, Wile	y (2012).								
Bo	ook (s) for l	Ref <mark>erence</mark>	b •								
1	Quantum I	Mechanics, G. Aruldhas, Prentice Hall of India, (2006).									
2	A Text Bo	ok <mark>of Quantu</mark> m Mechanics, P.M. Mathews & K. Venkate	<mark>san, Ta</mark> ta McGraw H	ill,							
	(2010).										
3	Solid State	e Physics: Structure and Properties of Materials, A.M.Wal	hab, 2 nd Edition, Nar	osa							
	Publishing	house, New Delhi, India, (2007).									
4	Solid State	Physics, S.O.Pillai, 4 th Edition, New Age International F	<mark>'u</mark> blishers, New Delh	i,							
	(2001).	6 70									
Re	elated Onlin	ne Contents [MOOC, SWAYAM, NPTEL, Websites et	tc.]								
1	https://np	otel.ac.in/courses/115/106/115106066/	50°								
2	2 <u>https://nptel.ac.in/courses/122/106/122106034/</u>										
3	3 <u>https://nptel.ac.in/courses/112/105/112105123/</u>										
4	4 <u>https://nptel.ac.in/courses/112/108/112108148/</u>										
5	5 <u>https://nptel.ac.in/courses/115/105/115105099/ EVALE</u>										
6	https://np	otel.ac.in/courses/115/104/115104109/									
Cou	urse Designe	ed by Dr N. Ponpandian e-mail ponpandia	m@buc.edu.in								

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	М	М	S	L	L	S	S	S	S	
CO2	S	S	М	S	S	М	М	L	S	S	
CO3	S	М	М	Μ	М	S	L	L	L	S	
CO4	S	S	М	L	М	М	L	M	М	S	
CO5	S	S	S	S	S	L	М	M	L	S	

Course and	12D		T	T	р	C						
Course code	130	CHEMISTRY OF NANOMATERIALS	L 1	<u> </u>	r A							
	,	Should have studied Chemistry/Allied	-	U	U	-						
Pre-requisite	1	chemistry/Applied chemistry as a major Syllabus 2										
		subject during graduate Programme.	Ver	sion	20	21						
Course Obje	ctives:											
1. To under	stand the	basic concepts of structure of atomic structure										
2. To be able to get familiarized with almost all the basic chemistry concepts												
3. To lay foundation for material aspects of inorganic chemistry in research and												
development												
4. To enhar	4. To enhance the level of understanding of polymer structure and polymer composite											
5. Get fami	liarity wi	th basics of kinetic of chemical reactions.										
Expected Co	urse Out	tcomes:										
On the succe	essful cor	npletion of the course, student will be able to:										
1 Rememb	er the ba	sic of structure of atoms and molecules			ŀ	<u> </u>						
2 Understa	nd aroma	atics and photochemistry of organic molecules			ŀ	(2						
3 Apply d	and f blo	ck elements for prepare metal chalcogenide			ŀ	<u> </u>						
4 Apply po	olymer co	omposite into differ applications			ŀ	<u> </u>						
5 Evaluate	suitable	organic and inorganic materials for nanomaterial des	sign	for	F	\$5						
solar ene	rgy appli	cations	_	TTC								
KI - Remen	iber; K2	- Understand; K3 - Apply; K4 - Analyze; K5 - Eval	uate	e; K6 - (Crea	te						
Unit:1	1.1	Chemical Bonds		12	hour	<u>'S</u>						
The structur	al theory	of organic chemistry, chemical bonds: the octet ru	ile,	writing	; Lev	V1S						
structures, o	exception	is to the octet rule, formula charge, resonance,	en	ergy cl	ang	es,						
quantum me	borano	atomic and molecular orbitals, the structure of ap^2 . The structure of hervilium hydride on hybridi	met.	nane sj), I Magu	lor						
silucture of	alonco el	all electron pair repulsion (VSEPR) theory Polar of	Zati	lent no	Jor a	nd						
non polar m	olecules	Representations of organic compounds structural for	rmu	ilas	iai a	nu						
	ofecules.	Representations of organic compounds surdetaria to	11110	nus.								
Unit:2		Chemical Kinetics		12	hou	rs						
Basic defini	tions. dif	ferential equation view of rate, rate constant, rate la	W. 1	reaction	1 ord	er.						
1^{st} and 2^{nd} .	Pseudo f	irst order kinetics, maths of determination of kinetic	cs f	rom rat	e lav	vs,						
half-life. Er	npirical	determination of reaction order and reaction kine	etics	: initia	l rat	es,						
kinetic anal	ysis, ex	perimental methods. Reversible 1st order equilib	ria:	K =	k1/k	-1,						
relation to Δ	G.											
Unit:3		Basics of Photochemistry		12	hou	rs						
Theory of 1	ight abso	orption-electronic excitation-properties & energies	of	excited	stat	es-						
Jablonski d	iagram-p	hoto physical processes-fluorescence and phospho	ores	cene-ex	cim	ers						
and exciple	and exciplexes-intersystem crossing-energy transfer-geometry of excited states-quantum											
efficiency.												
In:+.1		Transition and Innan Transition Flamouta		10	her	P C						
Definition of	nd alast	Transition and Inner Transition elements	oh	12 proctori	nou	rs of						
transition of	nu electi	comparison of first transition series with second	cna an	d third								
ualisition e	ements,	comparison of mist transition series with second	all	u unitu	501	102						

elements. Position of lanthanides and actinides in the periodic tables, general characteristics of both series and their comparisons. Basic concepts of coordination compounds: ligands (mono, di, and poly dentate ligand), chelation, coordination numbers and Nomenclature of coordination compounds. Nature of metal ligand bonding in complex, study by valence bond theory and crystal field theory.

Unit	Unit:5 Polymers and Nanocomposites											
Intro	Introduction and review of Polymer, Properties of polymers, Polymer additives:											
plasticizers, fillers and reinforcement: Polymer blends- toughen plastics and phase												
separated blends. Polymer composites- mechanical properties. Introduction to polymer												
nanocomposites: Basic materials for polymer nanocomposite. Characterization of polymer												
nanocomposites, Properties of polymer nanocomposites: Thermoplastic nanocomposites,												
Thermoset Nanocomposites, Elastomer Nanocomposites. Applications of polymer												
nanocomposites in: high temperature, paint formulation, Automobiles, Aerospace,												
Injection Molded Products.												
					30							
Unit	t:6		Contemp	oorary Issu	es		2 hours					
Expe	ert lect	ures, online	seminars – webinars	S C								
					27	6						
		19		I. S	Total L	ecture hours	62 hours					
Bool	k (s) fo	or Study			13		41-					
1	Orgar	nic <mark>Chemist</mark>	ry, T. W. Graham S	olomons, Ci	raig <mark>B.</mark> Fry	v <mark>hle, Scott</mark> A. Si	nyder, 12^{m}					
	Editio	on, <mark>John Wi</mark>	ley & Sons, New Yo	ork, 2017.		No.						
2	Select	ted Topics	in Inorganic Chemi	stry, Malik,	Wahid U,	, Tuli G.D, Ma	dan R.D. S.					
	Chand Limited, 2009.											
3	Funda	amentals of	Molecular Spectro	scopy, C. N	V. Banwell	l, 5 th Edition, M	IcGraw Hill					
	Educa	ation; 2019.		12m	-//-							
4	Polyn	ner Scien <mark>ce</mark>	V.R.Gowariker, N.	V. Viswana	than, and J	ayadev Sreedha	ar, New Age					
	Intern	ational Pub	lishers, 2015.		62							
5	Physi	cal Chemist	ry, Peter Atkins, Jul	io de Paula,	OUP Oxfo	ord, 2010.						
		501				S.						
Bool	k (s) fo	r Reference	e			0.0						
1	Adva	nced Organ	ic Chemistry: Reacti	ons, Mecha	nisms, and	Structure, Micl	hael B.					
	Smith	n, March's 8	ⁿ Edition, Wiley, 20	19.	-55							
2	Adva	nced Inorg	anic chemistry, F.	A. Cotton,	G. Wilki	inson, C. A. N	Aurilo, M.					
	Boch	mann, 6 ^m E	lition, Wiley, 2016.	TO ELEVA	E							
3	Polyn	ner Matrix	Composites and T	echnology,	Ru-Min	Wang, Shui-Ro	ong Zheng					
	Yujur	n Zheng, 1 st	Edition, Woodhead	Publishing,	2011.							
Rela	ted O	nline Conte	nts [MOOC, SWA]	YAM, NPT	EL, Webs	ites etc.]						
1	https:	//www.yout	ube.com/watch?v=p	<u>BMWRaL</u>	<u>.62w</u>							
2	https:	//nptel.ac.in	/courses/104/103/10	4103071/								
3	http://	/nptel.iitm.a	<u>c.in</u>									
4	https:	//nptel.ac.in	/noc/courses/noc19/	SEM1/noc1	9-cy03/							
Cours	se Desi	gned By	Dr P. Sakthivel		e-mail	sakthivel.p@	buc.edu.in					

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	L	М	S	М	М	L	S	Μ	
CO2	S	S	L	М	S	L	М	L	S	S	
CO3	S	S	L	S	М	L	М	L	Μ	Μ	
CO4	М	S	S	S	S	M	М	М	М	М	
CO5	S	S	L	S	S	M	S	М	М	S	
S	Stro	ong		Μ	Medium		L		Low		

Course code	13C	BIOLOGY FOR NANOTECHNOLOGY	L	Т	Р	С					
Core			4	0	0	4					
Prerequisite	!	Basic knowledge on Biology or Life Sciences	Syll Ver	abus ·sion	202 202	0 - 21					
Course Obj	ectives	:									
1. Explore	the fu	indamental cell science and its growth with resp	ect to	proka	ryotes	and					
eukaryo	tes.										
2. Know th	ne basi	c biomolecules and its role in energy generation pr	ocess.		1						
5. Decipher knowledge on natural defense mechanisms and the techniques involved.											
Expected Co	mreo (Jutcomes:									
On the succ	essful	completion of the course student will be able to:									
1 Remen	ber th	e elemental concepts behind the cell structure and	functi	on		K1					
2 Unders	tand t	he naturally existing bio nanostructures and	its as	sembli	ng						
process	3				8	K2					
3 Analyz	e the A	ATP generation process via different metabolic path	hways			K4					
4 Unders compo	tand th nents in	ne principles of immune mechanisms to combat in the process of self-protection	with	non-se	lf-	K2					
5 Analyz	e the in	nteractions of antigen and antibody by immuno tec	hniqu	es		K4					
K1 - Remer	nb <mark>er; F</mark>	K2 - Understand; K3 - Apply; K4 - Analyze; K5 -	Evalu	ate; K (6 - Cre	eate					
Unit:1		Basics of Biology			12 ho	ours					
Structure ar	nd func	tion of cells and organelles in Prokaryotes and Eu	lkaryo	tes. – I	Nuclei	us -					
chromosom	e orga	nization, structure and function of DNA, RNA &	its typ	bes. Ri	bosom	nes,					
Endoplasmi	c retio	culum, Golgi apparatus, Mitochondria, Lysoso	me a	nd the	e Plas	sma					
membrane.	Cell di	vision and Cell Cycle - Mitosis - Meiosis.		3							
Unit.2		Nanostructuros in Biological Systems	100		12 h						
Structure ar	d orga	nization and functions of biomolecules: Carbohyd	rates	Linide	Prote	oine					
and Nucleic	acids.	inzation and functions of biomolecules, Carbonya	races,	Lipido	, 11000	/1115					
		Se al									
Unit:3		Energy Metabolism			12 ho	ours					
Energy Me	etabolis	sm, Glycolysis, Tricarboxylic acid cycle (TCA	.), Ele	ectron	Trans	sport					
Chain, Oxio	dative j	phosphorylation, and ATP generation, Gluconeoge	enesis.								
Unit:4		Immunology			12 h	ours					
History of i	mmun	ology, Innate and acquired immunity, Hematopoie	esis, C	Cells ar	d org	ans					
of the imm	une sys	stem. B and T- cell activation. Phagocytosis - O	xygen	depen	dent	and					
Oxygen ind	lepend	ent killing. Antigen -Properties of antigen. Ant	ibody	- struc	cture a	and					
types. Hybr	idoma	Technology.									
IInit.5		Immunological Deactions			17 h	011164					
Antigen -	Antih	ody Interactions Complement Pathways - Cl	accica	l and		nate					
Pathways. 1 – ELISA, R	Immun IA	o-hematology, Blood group, Rh - incompatibilitie	es. Im	muno 1	techni	ques					

Ur	nit:6	Contemporary Issues	2 hours							
Ex	pert lect	ures, online seminars– webinars								
		Total Lecture hours	62 hours							
Bo	ook (s) fe	or Study								
1	A Text and Co	t of Microbiology. Revised edition, Dubey RC and Maheswari DK S mpany Ltd., New Delhi, (2012)	S. Chand							
2	Text B Press, (book of Microbiology, Ananthanarayan & Paniker's. 9 th Edition, Un (2013).	iversities							
3	Microb New Y	iology, Pelczar TR M J Chan ECS and Kreig N R Tata McGraw-Hork, (2006).	iill INC.,							
Bo	ook (s) fe	or Reference								
1	Microb edition	Microbiology, Prescott L M, J P Harley and D A Klein, Sixth edition, International edition, McGraw Hill, (2005).								
2	Principles of Biochemistry (IE), Lehninger, David L.Nelson7 th Edition, (2017).									
3	Kuby I edition	mmuno <mark>logy - Richa</mark> rd A Goldsby, Thomas J Kindt, Barbara A Osborn , W H Freeman and company, New York, (2000).	e, Fourth							
4	Immun Univer	ology and Immuno technology, Chakravarthy A R, 1 st Edition, sity Press, India. ISBN: 9780195676884, (2006).	Oxford							
		55 10 16.								
Re	elated O	nli <mark>ne Conte</mark> nts [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https:// metabo	www.elsevier.com/books/bacterial-physiology-and- lism/sokatch/978-1-4832-3137-2								
2	https://	www.frontiersin.org/journals/microbiology/sections/microbial-								
3	https://	www.ncbi.nlm.nih.gov/books/NBK10779/								
		5 70 8								
Cou	irse Desi	gned By Dr. P. Premasudha e-mail premasudha@bu	c.edu.in							
		Coimbatore Colle								

Mapping with Programme Outcomes											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	S	M	S	SE	L	S	Μ	S	
CO2	S	S	М	Μ	S S	S	М	S	S	S	
CO3	М	L	L	L	М	М	S	S	Μ	S	
CO4	М	М	L	М	S	S	S	S	S	S	
CO5	S	S	М	М	S	S	S	S	S	S	
S	Strong			Μ	Medi	um		L		Low	

Course code	13D	DDODEDTIES OF MATEDIALS	L	Т	P	С					
Core		PROPERTIES OF MATERIALS	4	0	0	4					
Pre-requisite		Fundamental knowledge in physics	Sylla	bus	202	0					
Course Object	ives:		V CI S		-202	11					
1. Remember	1. Remember the concepts of atomic bonding, crystal structures, and crystalline nature as related										
to processing and performance of Chemical materials.											
2. Understan	2. Understand the concepts of Imperfection of Crystals between structure-processing-properties										
for selection	on of exi	isting materials and development of materials in the struct	tures,	and o	lefec	ts.					
3. To know	about	the carrier concentrations in semiconductors, Ferm	i lev	el co	oncep	pts,					
conductivi	conductivity and mobility concepts of semiconductors, Hall Effect nature - Hall coefficients										
for intrinsi	for intrinsic and extrinsic semiconductors and Hall effect in Semiconductor materials										
4. Understan	d the co	ncepts of Mechanical and Optical properties for given ma	terial	syste	ms.						
5. Understan	d the co	ncepts of Magnetic properties for given material systems	·								
	0 /	Call and the second sec									
Expected Cour	rse Out	comes:									
On the succes	siul com	demonstrate a basic remembering of the banding structure									
1 and natur	e of the	materials.	stures		K1						
2 The stude and defect	2 The student will demonstrate an understanding of the properties of materials K2,K4										
3 The stude	The student will demonstrate an understanding of approaches to concepts and K2,K3										
The student will demonstrate on understanding of reacherical and artical											
4 properties	4 The student will demonstrate an understanding of mechanical and optical K2,K4 properties of materials										
5 The stud	ent wil	demonstrate an understanding of magnetic properti-	es of		K2,K	(4					
K1 - Rememb	er: K2 -	Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate: I	X6 - (Create							
	5		7	1							
Unit:1	0	Structure of Materials	1	12	hou	ırs					
Introduction t	o Struct	ure of atoms – Quantum states-Atomic bonding in solids-	bindi	ng en	ergy	_					
interatomic sp	oacing –	variation in bonding characteristics – Single crystals – p	olycr	ystals	– No	on					
crystalline sol	ids.	Company									
		St Q									
Unit:2		Crystal Imperfections		12	hou	Irs					
Imperfection	in solids	s – Point and line defects-Frenkel defect –Schottky defec	t-Bur	ger v	ector	'S-					
Vacancies –	Interstiti	als – Geometry of dislocation –Schmid s law – Surfac	e imp	perfec	ction	_					
	defects	– Microscopic techniques – grain size distribution.									
Unit:3		Band Model of Somiconductors		12	hou	rc					
Carrier conce	ntration	s in intrinsic extrinsic semiconductors – organic semicon	nduct	12	Ferr	ni ni					
level – variati	on of co	inductivity mobility with temperature – law of mass action	nuuct	- Hall e	ffect	·					
Hall coefficie	nts for i	ntrinsic and extrinsic semiconductors – Hall effect device	es. Ar	oplica	tion	of					
diffusion in si	intering,	doping of semiconductors and surface hardening of meta	als -1	influe	ence	of					
size on band g	gap ener	gy.									
Unit:4		Mechanical And Optical Properties		12	hou	irs					
Stress, Strain	, Elastic	properties - Deformation - elasticity - hardness - Op	tical j	prope	rties	-					
Light interact	tion wit	h solids – Atomic, electronic interaction, non – radia	tive	transi	tion	-					
refraction, ref	lection,	absorption, transmission, luminescence.									

U	nit:5	Magnetic Properties	12 hours								
D	ia and	Para-magnetism-ferro, ferri and antiferromagnetism - magnetic hysteres	is - Weiss								
m	olecular	field theory - Heisenberg's theory - magnetic anisotropy - domain theory	- Exchange								
le	ngth –na	anomagnetism - superparamagnetism.									
			•								
U	nit:6	Contemporary Issues	2 hours								
Ex	kpert lec	tures, online seminars – webinars									
			•								
		Total Lecture hours	62 hours								
Bo	ook (s) f	for Study									
1	Materi (2007)	als Science and Engineering: An Introduction, W. D. Callister, John Will	ley & Sons,								
2	Functional Materials: A Chemist's Perspective, K. Vijayamohanan Pillai and Meera Parthasarathi, Orient Blackswan, (2013).										
3	Introdu	uction to Solid State Physics, C. Kittel, Wiley Eastern Ltd, (2005).									
4	4 Materials Science and Engineering: A First Course, V. Raghavan, Prentice Hall. (2006).										
			,								
Bo	ook (s) f	for Reference									
1	Solid S	State Physics, A.J. Dekker, Macmillan & Co, (2000).									
2	Physic	s of Semiconductor Devices, Michael Shur, Prentice Hall of India, (1995).									
3	Introdu	uction to Nanotechnology, Charles P Poole Jr., and Frank J. Ownes, John V	Viley Sons,								
	Inc., (2	2003).									
4	"Ency	clopedia of Nanoscience & Nanotechnology", H. S. Nalwa (Ed.), American	n Scientific								
	Publis	hers, California, (2004).									
5	"Intro	duction to Solid State Physics", C. Kittel, Wiley Eastern Ltd., (2005).									
R	elated (Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1	https	://nptel.ac.in/courses/113/104/113104076/									
		8 8 8 5	/								
Cou	urse Des	signed By Dr C. Viswanathan e-mail <u>viswanathan@l</u>	ouc.edu.in								
		29 Stigst Coimbatore Gold									

Mapping with Programme Outcomes											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	М	L		M	L	L	L	L	S	
CO2	S	S	М	М	М	L	L	L	Μ	S	
CO3	S	S	М	М	S	L	L	L	S	S	
CO4	S	S	S	М	М	L	М	М	Μ	М	
CO5	S	S	S	М	М	L	М	М	Μ	М	
S	Stro	ong		Μ	Medi	ım		L		Low	

Cou	rse code 1EA	COMPUTATIONAL METHODS	l T	P C							
	Elective	COMI UTATIONAL METHODS	4 0	0 4							
Pre-	requisite	Basic knowledge in Mathematics and Computer	yllabus	2020							
0		programing.	Version	-2021							
1 To learn about data processing and analysis											
1. 2	To learn about da	ta processing and analysis									
2. To gain knowledge on runner can methods and scientific computing. 3. To understand the Python programming for computation and IOT applications											
5.											
Expected Course Outcomes:											
On	the successful co	npletion of the course, student will be able to:									
1	Organize, Interp	ret and analyze data		K4							
2	Understand the	basic concepts involved in molecular dynamics simulation		K2							
3	Understand the	basics of data analysis.									
4	Have a knowled	ge in computational quantum chemistry									
5	Use Python prog	ramming for AI, Machine Learning and IOT applications		K3							
K1	– Remember; K2 -	-Undestand; K3– Apply; K4– Analyze; K5– Evaluate; K6–	- Create	_1							
	,										
Un	it:1	Biostatistics	12	hours							
De	finitions – Error –	accuracy – precision – bias – Mean – standard deviation –	relative st	andard							
dev	viation – coefficie	nt of variation $-$ confident limit of a measurement $-$ propag	ation of e	errors –							
two	o sided test V <mark>s on</mark>	e sided test – F-test for precision - t-tests for bias – Linear	r correlati	on and							
reg	ression – Analysi	s of variance (ANOVA).									
		The street and a street and and									
Un	it:2	Root Finding	12	nours							
Ro	ots of transcende	ental equations: Bisection, Regula-Falsi, Iteration and N	Jewton-R	aphson							
me	thods (SS), Gauss	elimination method, Gauss seidal method.									
TIm	:4.2	Internal Stien and Course Fitting	12								
Un No	It:3	backward & general formula for interpolation Divide	d differ	nours							
Dre	wioll's lorward,	d difference – Newton's divided difference formula La	orange f	ormula							
(SF	B). Least squares of	curve fitting. Linear and Nonlinear curve fitting (SS)	igrange i	omuna							
	s), Deuse squares (
Un	it:4	Computational Methods	12	hours							
Co	mputational quan	tum chemistry - Cartesian coordinates and internal coordinates	nates. Inp	out file.							
Ca	lculations using c	omputational software: Geometry optimization, Molecular	orbital, c	harges,							
ele	ctron density. In	portance for frequency calculation, plotting the theorem	tical vibr	ational							
spe	ectra, Interaction e	nergy: Supermolecular method, BSSE correction.									
TT	•, =	D. (I	10.1								
Un Int	ILIJ erpreter Drogram	Fyender Evention Statements Eventscience Elever Control		tions							
Mu Nu	meric Types - Se	uences - Strings - Tuples - Lists - Classes - Constructure	з - ГИПС s ₋ Inhari	tance -							
Te	xt & Binary files.	Reading and Writing - Visualizing plots		tance -							
10	Text & Dinary mes - Reading and writing - visualizing piols										
Un	it:6	Contemporary Issues	2 h	ours							
Exj	pert lectures, onlin	e seminars– webinars									
		Total Lecture hours	62 h	ours							

Bo	ook (s) for Study									
1	Elementary statistical methods, S.P. Gupta, Sultan Chand and sons publishers,(2014).									
2	Numerical methods in science and engineering, M.K. Venkataraman, The National Publishing									
	Company – Madras, (1999).									
3	Numerical methods with programs in 'C', T. Veerarajan, T. Ramachandran, Tata McGraw									
	Hill, New Delhi,(2006).									
4	Mark Lutz, "Learning Python", O'Reilly Media, 5 th Edition, (2016).									
Bo	ook (s) for Reference									
1	Python Programming: An Introduction to Computer Science, John M. Zelle									
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1	https://onlinecourses.nptel.ac.in/noc19_ee41/preview									
2	https://nptel.ac.in/courses/108/106/108106165/									
3	https://nptel.ac.in/courses/115/107/115107122/									
4	https://nptel.ac.in/courses/106/105/106105166/									
Col	urse Designed By Dr B T Rajendrakumar e-mail rtrkumar@buc edu in									

Mappin	Mapping with Programme Outcomes											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	M	S	S	М	S	M	M	S	S		
CO2	М	S	S	S	S	М	L	М	М	S		
CO3	S	L	M	M	M	L	L	L	S	S		
CO4	М	М	S	M	3L	M	М	Μ	S	S		
CO5	S	M	M		L	L	L	L	Μ	S		
S	Stroi	ng		M	Mediu	ım		S L		Low		
Star UN Coimbatore Coimbatore Coimbatore Coimbatore Coimbatore Coimbatore Coimbatore Coimbatore Coimbatore												

3

Cou	irse code	1EB	ELECTRONIC DEVICES	L	Т	Р	С				
	Electiv	e		4	0	0	4				
Pre	requisite		Fundamental knowledge in physics	Sylla Vers	bus ion	202 -202	:0 21				
Cou	rse Objec	tives:									
1.	To unders	tand the	basics of number systems, digital logic levels, functional	ity of	digita	al					
2	componer	its.									
2. 3	Operation To constru	1 OF digit	al electronics circuits.								
5. To construct and analyse various digital electronic circuits.											
Expected Course Outcomes:											
On the successful completion of the course, student will be able to:											
1 Understand the concepts of Semiconductor Physics											
2 Understand the fundamental concepts and techniques in digital electronics.											
3	Understa	nd the <mark>ba</mark>	sic concepts for advanced electronic devices.			K	3				
4	Have a k	nowledg	e in making diodes and LEDs			K	3				
5	Have kno	wledge	creation to develop nano and molecular electronic device	s.		K	4				
K1	– Rememb	er; <mark>K2–</mark> J	Undestand; K3 – Apply; K4 – Analyze; <mark>K5</mark> – Evaluate; K 6	6– Cre	ate						
		Q.									
Un	it:1		Semiconductor Physics		12	hou	irs				
Re Ch an Str	combinationarge – The Intrinsic Cucture of C	on of Ch e Potenti Semicon Open Circ	arges – Diffusion Continuity Equation – Injected al Variation within a Graded Semiconductor – Carrier ductor – Fermi Level in a Semiconductor having Ir cuit p-n Junction.	Mino Conce npurit	ority (entrati ies –	Carri ions Ba	ier in nd				
Un	it:2	90	Operational Amplifiers		12	hou	rs				
Th bu sta sle vo	e ideal O ilding bloc ge; Op-An w rate; O ltage-to-cu	p-Amp-in eks-emitt np chara Dp-Amp rrent con	nverting, non-inverting and differential amplifiers-CM er coupled differential amplifier, active load, level sh cteristics-open-loop input output characteristics, freque applications-adder, subtractor, integrator, differentia verter, current-to-voltage converter and logarithmic amp	RR; (ifting ncy re ator, lifier.	Op-And and espon comp	mp outp se a parate	IC out nd or,				
Un	it·3		Basic Devices		12	2 ho	urs				
Unit:3Basic Devices12 hoursBipolar Junction Transistor (BJT) – Field Effect Transistor (FET) - Junction Field Effect Transistor (JFET), Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Metal Semiconductor Junction Field Effect Transistor (MESFET): Structure, Working, I-V Characteristic Studies and its Applications.											
Un	it:4		Advanced Devices		12	hou	rs				
Tra Ap Sw (L) En	ansfer Elec oplications vitches - P ED) – Pri nission of I	etron dev - PIN I IN Diod nciple, 0 Radiation	vices (Gunn Diode) – Principle, Working, I-V Characte Diode: Structure, Working, - PIN Diode Parameters e as Limiters - Photo Detectors – Photo Diode - Ligh Construction, Working and Characteristics – Laser - a – Population Inversion – Semiconductor and Diode Las	ristic - PIN t Emi Abse ers.	Studi N Dio tting orptic	es a ode Dio on a	nd as de nd				

Ur	nit:5	Digital Principles	12 hours									
Μ	aster Sl	ave, J.K, Edge Triggered JK and D-Type Flip Flops - Set up, Hold	and Propagation									
De	elay Tir	nes - Shift Registers - Counters - Ring Counter - Up Down Counter	r – Synchronous									
Co	ounters.											
Ur	nit:6	Contemporary Issues	2 hours									
Ex	Expert lectures, online seminars- webinars											
	Total Lecture hours 62 hours											
Bo	ook (s) f	for Study										
1	Integra (1971)	ated Electronics – Jacob Millman and C. Hal Kias, Tat McGraw Hi	ll Publishing Co.									
2	Basic l	Electronics (Solid State), B.L. Theraja, S. CHAND (2006).										
3	Microv	waves, M.L. Sisodia, V.L. Gupta, New Age International (2001).										
4	Semice	onductor Devices, Kanaan Kano, Prentice Hall of India Pvt. Ltd. (1997	7)									
5	Moder	n Physics, R. Murugeshan, Ninth Edition (2003).										
6	Digital	l Computer <mark>Fundamentals,</mark> Thomas C. Bartee, Tata Mc Graw Hill (201	.1)									
7	Optica	l Electronics, Ajoy Ghatak and K. Thyagarajan, Cambridge University	/ Press (1998)									
8	Digital	Circuits and Microprocessors, Herbert Taub, McGraw Hill (1982).										
9	Text B	ook of Electronics, S. Chattopadhyay, New Central Book Agency Pvt	. Ltd., Kolkata,									
	2006											
Bo	ook (s) f	For Ref <mark>erence and the second se</mark>										
1	Physi Editio	cs of Semiconductor Devices, S. M. Sze and Kwok K. Ng, Wiley I on (2007).	Interscience, 3rd									
2	Intro	luction to Semiconductor Devices, M.S. Tyagi, John Wiley &Sons (20	003).									
3	Meas	urement Instrumentation and Experimental Design in Physics and	Engineering, M.									
	Saver	and A. Man Singh, Prentice Hall, India (2000).										
Re	elated C	Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]										
1	https:	://nptel.ac.in/courses/108/108/108108122/										
2	https:	://nptel.ac.in/courses/108/108/108108111/										
3	https:	://nptel.ac.in/courses/108/106/108106069/										
4	https:	://nptel.ac.in/courses/108/105/108105132/										
		DELLITEOUT 2-11										
Cou	irse Des	signed By Dr N. Ponpandian Control e-mail ponpandian@	buc.edu.in									

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	М	L	L	М	L	L	L	L	S	
CO2	S	S	Μ	М	М	L	L	L	М	S	
CO3	S	S	Μ	М	S	L	L	L	S	S	
CO4	S	S	S	М	М	L	М	М	М	М	
CO5	S	S	S	М	М	L	М	М	М	М	
S	Stro	ong		Μ	Medi	um		L		Low	

Co	ourse code	13P				חח		FICAT	T	r		L	Т	Р	С
	Core					PR	KAU	IICA	L – I	L		0	0	4	4
Dr	-roquisito		Bas	sic kno	wledge	e and ı	under	rstandi	ing i	n physics	8,	Sylla	abus	2020) -
110	e-requisite		che	emistry	and bio	ology	<i>'</i> .					Ver	sion	202	1
Co	urse Objecti	ves:						~ ~							
1.	To experim	nentally	realiz	ze the c	concept	ts in P	Physic	cs, Che	emis	try and E	Biology for r	anosci	ence.		
2.	To expose	students	s to co	ommon	i topics	s in Ph	nysics	s, Chei	misti	ry and bi	ology to unc	lerstanc	l nano	scienc	:e.
Ev	nected Cour	se Outo	romes	s •											
0	n the success	ful com	pletio	on of th	ne cours	se, stu	ıdent	will b	e abl	le to:					
1	Gain practi	cal kno	wledg	ge by	applyin	ng the	e exp	perime	ntal	methods	s to correlat	te with	the	K4	
	theory		·		11 2	U									
2	Learn the us	sage of	variou	us mea	sureme	ents.	5.8	510.						K2	
3	Apply the a	nalytica	ıl tech	nniques	and gra	raphic	cal ana	alysis	to th	n <mark>e experi</mark>	mental data			K3	
4	Apply the v	arious p	proced	dures a	nd tech	nique	es for	the ex	peri	ments.				K4	
5	Develop intellectual communication skills and discuss the basic principles of scientific K4														
	concepts in	a group).	5 1			6		_0	38	E				
K	1– Remembe	er; K2 –J	Under	rstand;	K3 – Aj	pply;	K4–	Analy	ze;	<mark>K5</mark> – Eva	luate; K6 – (Create			
					\mathcal{I}					12					
P	ractical		46		1.64				<u> </u>	3	19.			,	
1	Study the f	forward	and r	reverse	charact	teristi	ics of	a Zen	er di	iode	16				
2	Colorime	etric titra	ation ((acid b	ase, col	lor co	ompou	und by	v inst	trument i	nethods)				
3	Pure cult	ure Tec	hniqu	i <mark>es (i) S</mark>	Spread I	Plate ((ii) Po	our Pl	ate (iii) Strea	k Plate (iv)	Serial I	Dilutio	n	
4	Construc	tion of a	adder,	, subtra	actor, di	ifferen	ntiato	or and	integ	grator cir	cuits using t	the give	en OP -	–Amp).
5	Complex	ometric	e titrat	tion by	using E	EDTA		-	-						
6	Bacterial	Growth	n Curv	ve and	Genera	ation 1	l'ine		0		C c'	3 /	-		
/	Dotontion	tion of a	a sing	gle FEI	ampin	ner wi		omme	on Sc	ource cor	inguration	1	/		
8	Potention	neu ic u	(i) Po	on or ac	Grom	Stain	ningo	and			60				
9	Morphore	Jgy OI	(i) D a (ii) Fi	lungi - 1	- Orain Lacto P	Phenol	ling a	ton Bl	ue M	lount	୍ବତ				
	DC electr	rical con	nducti	ivity an	nd temp	peratu	re co	efficie	ent of	f resistar	ce of a semi	conduc	tor thi	n film	 ו
10	using fou	r point	probe							1159					-
11	Synthesis	s p-Bron	noace	etanilid	le from	Aceta	anilid	le.		3					
12	Estimatic	on of Ca	arbohy	ydrates		UCA	TE TO) ale	Lill						
13	Determin	ation of	f char	ge type	e and ca	arrier	conce	entrati	on i	n a given	nanofilms u	using h	all met	hod	
14	Preparati	on of tr	ibrom	noanilin	ne from	n Anili	ine								
15	Blood Gr	ouping	and R	Rh Con	npatibil	lity									
Co	urse Designe	d By								e-mail					

Mappin	Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	Μ	М	L	S	S	Μ	S	М	S	
CO2	S	Μ	М	L	S	Μ	S	L	М	S	
CO3	S	М	М	L	S	S	S	М	М	S	
CO4	S	М	М	L	S	М	М	S	М	S	
CO5	S	М	М	L	S	S	М	М	М	S	

S Strong M Medium L Low

G 1	22.4		т	m	D	0					
Course code	23A	SYNTHESIS OF NANOMATERIALS	L	Т	Ρ	C					
Cor	e		4	0	0	4					
Pre-requisite		Basic knowledge in science (Physics, Chemistry and	Syllabu	ıs	202	20 -					
	·.	Biology)	Versio	n	20	21					
Course Object	ctives:										
1. To learn	the top-d	own and bottom-up approach of preparing nanomaterials.	• 1								
2. To unde	erstand the	physical, chemical and biological approaches of nanomat	erials s	ynth	esis						
3. To tune	the morph	ology and functional properties by tuning the preparation	parame	eters	•						
4. To apply	y basic kno	owledge of synthesis to prepare functional and smart mate	erials.								
5. 10 unde	erstand the	lithographic process for the fabrication of nanodevices.									
Expected Co	urse Outco	omes									
On the successful completion of the course, student will be able to:											
1 Synthe	size nanor	naterials using physical chemical and biological approach	AS			к2					
2 Tune th	2 Tune the size and shape of the nanomaterials for diverse applications K4										
2 Tulle u 3 Unders	tond the fu	inctionalization of papoparticles for specific applications				K4 K5					
J Cliders		medionalization of hanoparticles for specific applications				KJ V5					
$\frac{4}{5}$ F1		inposites for tuning their functional properties.				KJ KC					
5 Fabrica	ite the dev	ice structures using lithographic techniques.	. ~			K6					
K1–Remen	nber; K2–	Understand; K3– Apply; K4– Analyze; K5– Evaluate; K6	5– Crea	te							
Unit:1		Chemical Methods			12 ł	nours					
Sol – gel pi	rocess <mark>– Se</mark>	If-assembly process – Electrodeposition – Spray pyrolysi	s– Flan	ne p	yrol	ysis–					
Metal nar	nocryst <mark>als</mark>	by reduction– Solvothermal synthesis– Photoch	nemical	S	nth	esis–					
Sonochemi	cal Syn <mark>the</mark>	esis-Reverse micelles and microemulsions- Combustion	n meth	od-	Гет	plate					
process-Cl	hemical va	por deposition(CVD)–Metal organic chemical vapor depo	osition(MO	CVI)).					
Unit:2		Physical Methods		A	12 ł	nours					
Ball millir	ng – Iner	rt gas condensation technique(IGCT)–Thermal evapo	ration-	Puls	ed	laser					
deposition(PLD)-DC	/RF <mark>magnetron sputtering – Molecular beam ep</mark> itaxy (M	1BE)-N	lelt	spin	ining					
process –IC	C Fabricat	tion process- Microlithography- Etching - Wet cleani	ng– Cl	MP-	Bac	kend					
process – A	tomic laye	er deposition (ALD)									
		Compature									
Unit:3		Biological Synthesis			12 ł	iours					
Introduction	n-Natural	nanocomposite materials – Biologically synthesi	zed n	anoj	oarti	cles-					
Nanostructu	ares and a	synthetic nanocomposites- Protein based nanostructure	forma	tion	- I	DNA					
Template r	nanostructi	are formation- Protein assembly – Biologically inspire	ed nanc	con	ipos	ites-					
Lyotropic In	iquid – Cr	ystal templating – Liquid crystal templating of thin films	– Bloc	k co	pol	ymer					
templating-	Colloidal	Templating.									
I In to 4	Contra	ration Chamister Dringinlag and Courfe as Francis 1' th	of	1	0.1						
Unit:4	Conjug	Nanomaterials	OI		.2 h	ours					
Conjugation	n Chemist	ry Principles - Amine Reactions - Thiol Reactions - H	ydroxy	Re	actio	ons -					
Carboxylic	Acid Re	eactions - Aldehydes and Ketones Reactions - Alker	nes and	1 A	lkyn	es -					
Photochem	ical React	tions - Biomolecules Conjugation Onto Self-Assembl	ed Mo	nola	yers	via					
Covalent E	Covalent Binding - Biomolecules Conjugation on Self - Assembled Monolayers via Affinity										
Binding - C	Binding - Challenges in (Bio) conjugation.										
Unit:5		Lithographic Methods			12 ł	nours					
Introduction	n–Lithogra	aphy–Photolithography – Phase-shifting photolithograph	ny – El	ectr	on ł	beam					

lit lit	hography hography	-X – ray lithography – Focused ion beam (FIB) lithography – Neutral a – Nanomanipulation and nanolithography– Soft Lithography– As	tomic beam ssembly of					
N	anopartic	les and nanowires - Other methods for microfabrication.						
Uı	nit:6	Contemporary Issues	2 hours					
Ex	pert lectu	ires, online seminars – webinars						
	1 () 0	Total Lecture hours	62 hours					
Bo	bok (s) fo	r Study						
1	Advance L. Koles	es in the Liquid-phase synthesis of inorganic nanoparticles, Brain L. Cushi michenko, Charles J. O'Connor, Chem Rev. 104 (2004) 3893-3946.	ing, Vladimir					
2	Nanocry Kulkarn	stals: Synthesis, Properties and Applications, C. N. R. Rao, P. J. Thoma i, Springer, (2007).	as and G. U.					
3	Nanotec (2008).	hnology – Enabled Sensors, Kourosh Kalantar – zadeh and Benjamin F	Fry, Springer,					
4	Nanostr	uctures & Nanomaterials: Synthesis, Properties & Applications, Guozhong (Gao, Imperial					
	College	Press, (2004).						
5	5 Nanochemistry: A Chemical Approach to Nanomaterials-Royal Society of Chemistry,							
	Cambrie	lge, UK, (2005).						
Bo	ook (s) fo	r Refer <mark>ence</mark>						
1	Nanoco Wiley –	nposite science and technology, Pulickel M. Ajayan, Linda S. Schadler, Pau VCH Verlag, Weiheim, (2003).	l V. Braun,					
2	Encyclo Wilson,	pedia of Materials Characterization, C. Richard Brundle, Charles A. Evans J Butterworth - Heinemann Publishers, (1992).	r., Shaun					
3	Hand bo	ok of Micro <mark>scopy</mark> fo <mark>r Nanotechnology, Ed. By Nan Yao</mark> and Zhong Lin Wa	ng, Kluwer					
	Academ	ic Press, (2005).						
4	Nanoch	emistry, G.B. Sergeev, Elsevier, (2006).						
Re	elated On	ine Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	/					
1	https://r	ptel.ac.in/courses/118/102/118102003/						
2	https://r	ptel.ac.in/courses/118/107/118107015/						
3	https://r	ptel.ac.in/content/syllabus_pdf/118102003.pdf						
	_	S (2)	<u> </u>					
Co	ourse Des	igned By Dr N. Ponpandian Crock e-mail ponpandian@buc.	edu.in					
		SOUCATE TO ELEVAL						

Mapping	g with Prog	gramme O	outcomes							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	М	S	S	S
CO2	S	S	М	L	S	S	М	S	S	S
CO3	S	S	М	М	S	Μ	L	М	S	S
CO4	S	S	S	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	М	М	S	S
S	Stro	ong		М	Mediu	ım		L		Low

Cou	irse code	23B	ΓΙΙΑ DA CTEDIZA ΤΙΟΝ ΟΕ ΝΑΝΟ ΜΑΤΕDΙΑΙ S	L	Т	Р	С		
	Core		CHARACTERIZATION OF NANO WATERIALS	4	0	0	4		
Drea	roquisito		Basic knowledge in science (Physics, Chemistry,	Sylla	bus	202	20 -		
Pre-	requisite		and Biology)	Vers	ion	20)21		
Cou	rse Objecti	ves:							
1.	To provid	e the stu	dents to understand the fundamental principles, concepts	pertai	ning	to m	aterial		
2	characteri	zation for the	analysis of structure optical machanical chamical	comr	ositio	n tk	ormol		
۷.	magnetic	and elect	rical properties of the materials	comp	osnio	u u	lermai		
3.	To analys	es and ap	pply for designing of new materials with multifunctional	prope	ties				
	ý								
Exp	ected Cour	se Outco	omes:						
On	the succes	sful com	pletion of the course, student will be able to:						
1	Understa	nd the fu	indamental concepts and techniques used in material char	acteri	zatior	ı	K2		
2	Eamiliar	in atmiat	ural and morphological techniques to confirms the phases	and	urfoo	0			
Z	structure	of mater	ials.	s and s	surrac	e	K3		
3	Analyze thermal r	the funct	ional properties such as electrical, magnetic, mechanical, s of materials.	optic	al and	1	K4		
4	Nuclear s	spectrosc	copic techniques to identify the chemical environment of	the			K5		
5 Surface characterization techniques to analyze composition and stoichiometry of the									
	materials	•					KJ		
K1	- Rememb	er; K <mark>2 -</mark>	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	<u> 6 - C</u>	reate				
Un	.;+· 1		Structural Characterization			121	201170		
Po	n. 1 wder X-ray	v diffract	cometer - Synchrotron radiation - ETIR spectrometer - R	aman	Spect	121	iouis eter -		
	Stylus pro	filomete	r.		Speer	IOIII	5101 -		
				9	- /				
Un	it:2		Microscopic and Surface Analysis			12 ł	nours		
Ele	ectron mic	roscopes	: scanning electron microscope (SEM) – transmission	electr	on mi	icros	cope		
(T	EM); Scar	ning Pr	obe Microscopy: atomic force microscope (AFM) –	scann	ing t	unne	elling		
mı	croscope(S	STM); La	iser confocal microscope – Brunauer – Emmer – Teller S	urtace	area	anal	ysis.		
Un	it·3		EDU Spectroscopy UNTE	<u> </u>		121	noure		
X-	rav photoe	lectron s	nectrometer (XPS) – EDAX and WDA - Mass Spectrom	eter –	Seco	ndar	v Ion		
M	ass Spectro	ometer ((SIMS) –ICPMS - Nuclear magnetic resonance (NM	R) -	Elect	tron	spin		
res	sonance (ES	SR).		,			1		
Un	it:4		Electrical, Mechanical and Magnetic Properties		12	2 ho	urs		
Impedance Spectroscopy - Electro analytical Techniques: Potentiometry - Cyclic Voltammetry -									
Ph	Physical Property Measurement System (PPMS) –Nanoindentation – Vibrating sample								
ma									
Un	it·5		Thermal and Ontical Properties			121	101115		
Di	fferential	scannino	calorimeter (DSC) – Thermogravimetric/Diffferentiz	al the	rmal	ana	lvzer		
(TG/DTA) – UV – Visible spectrophotometer – Spectroflourometer – Contact angle measurement									
Dy	namic Lig	ht Scatte	ring (DLS)						

Ur	nit:6		Contempora	ary Issues		2 hours				
Ex	pert lecture	es, online	seminars – webinars	-						
				Total	Lecture hours	62 hours				
Bo	ook (s) for S	Study								
1	Encyclope	edia of M	aterials Characterization,	C. Richard Brundl	le, Charles A. E	Evans Jr., Shaun				
	Wilson, B	utterwortl	n-Heinemann Publishers, (1992).						
2	Handbook	of Micro	scopy for Nanotechnolog	y, Ed. By Nan Yao	o and Zhong Lir	n Wang, Kluwer				
	Academic Press, (2005).									
3	3 Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Guozhong Gao, Imperial									
	College Press, (2004).									
4	4 Nanotechnology - Enabled Sensors, Kourosh Kalantar-zadeh and Benjamin Fry, Springer (2008).									
5	5 Nanochemistry, G. B. Sergeev, Elsevier, (2006).									
			100 M	il no series						
Boo	ok (s) for R	eference		300						
1	Nanotechi	nology: 1	Basic Science and Eme	erging Technolog	<mark>ies –</mark> Mick V	Wilson, Kamali				
	Kannanga	ra, Geoff	Smith, Michelle Simmons.	, Burkhard Raguse,	<mark>, Ove</mark> rseas Press	, (2005)				
2	Nanocom	posite Sci	ence and Technology, Pul	ickel M.Ajayan, L	inda S.Schadler,	, Paul V. Braun,				
	Wiley-VC	H Verlag	, Weinheim, (2003).		2					
3	Introducti	on to Nan	<mark>oscien</mark> ce, S. M. Lindsay, 1	st Edition, Oxford	University Press	s, (2010).				
					5					
Re	lated Onlir	e Content	s MOOC, SWAYAM, N	PTEL, Websites etc	2.]					
1	https://npt	tel.ac <mark>.in/c</mark> o	ourses/118/104/118104008		194					
2	https://npt	tel.ac.in/co	ourses/113/107/113107081	100000000						
3	https://wv	ww.classce	entral.com/course/swayam	structural-analysis	-of-nanomateria	ls-14310				
		6.0								
Cou	rse Design	ed By	Dr N. Ponpandian	e-mail	ponpandian@	buc.edu.in				

Mapping	with Prog	gramme C	outcomes	14000	n 111	111		S.		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	Μ	oli i Selori	S	S	S	S	S
CO2	М	S	S	M	S	S	S	S	S	S
CO3	М	S	S	あらいろい	S	SIL	Μ	S	М	S
CO4	М	S	S	M	S	S	М	S	М	S
CO5	М	S	S	M	S	S	М	S	S	S
S	Stro	ong		М	Mediu	ım		L		Low

Course Code	23C	MICRO AND NANOFABRICATIONS	L	Т	Р	С				
Core			4	0	0	4				
Pre-requisite		Basic understanding in Materials Science	Sylla Vers	bus ion	2020 202) - 21				
Course Object	tives:									
1. To understa	and the c	lean room standards and other aspects on process integration	tion.							
2. To understa	and varic	ous techniques involved in nanostructuring MEMS/NEMS	5.							
3. To unders	tand the	e process of nano manipulation and analyzing it by	vario	us ir	nagi	ng				
techniques.										
4. To understa	and the f	undamentals of mems design, application and future chall	lenges	5.						
5. To understa	and the f	undamentals of NEMS design, application and future cha	llenge	es.						
Expected Cou	Expected Course Outcomes:									
On the succes	sful con	pletion of the course, student will be able to:								
1 The stude	ent will	get a basic understanding on clean room standards and pr	rocess]	K2					
integratio	on.									
2 The stud	ent will	demonstrate an understanding on nanostructuring by va	arious]	K2, K	6				
lithograp	hic techi	niques.			,					
3 The stud	ent will	be able to image and inspect nanostructured materia	als by]	K2, K	4				
various c	onventic	nal and advanced techniques.	5		,					
4 The stude	ent will u	inderstand the MEMS techniques, application and its futu	ıre]	K4, K	5				
5 The stude	ent <mark>will u</mark>	inderstand the NEMS techniques, application and its futu	re]	K4, K	5				
K1 - Rememb	oer; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Ireate						
	,									
Unit-1		Clean Room and Process Integration		12	hou	rs				
Clean Rooms	: Clean	room Standards-Clean room sub systems-Environment S	afety	And	Hea	<u>th</u>				
Aspects-Oxid	lation –	Lithography – Etching- Diffusion Process Integration: Ju	inctio	n and	Oxi	de				
Isolation-LO	COS m	ethods-Trench Isolation-Semi Insulating Substrates-Se	chottk	v co	ntac	ts-				
Implanted C	Ohmic (Contacts-Alloyed Contacts-Multilevel Metallization-P	lanari	zatio	n a	nd				
Advanced Int	erconne	ct.		/						
	90	STAR UNIT OF								
Unit:2		Nanostructuring By Physical Techniques		12	hou	rs				
State-Of-The	-Art (in	cluding principles, capabilities, limits, applications) EU	JV lit	hogra	iphy	_				
Phase-shifting	g photol	ithography –X-ray lithography – Electron Beam Direct	Writir	ıg Šy	stem	ı —				
Focused ion	beam ((FIB)lithography – Neutral atomic beam lithography	– Pl	asma	-Aid	ed				
Nanofabricati	ion – S	oft Lithography - Nanosphere Lithography- Nanoin	nprint	- D	ip-p	en				
nanolithograp	hy –key	consequences of adopted techniques.								
Unit:3		Nanomanipulation and Processing		12	hou	rs				
Scanning tur	nneling	microscopy (STM) - Atomic force microscopy (AF	M) –	Nea	ır-fie	ld				
scanning opt	tical mi	croscopy (NSOM) – Advanced Techniques: Emboss	sing a	and s	surfa	ce				
passivation, 1	passivation, Dimensional Subtraction and Addition, Multistep Processing, of -Micro contact									
printing– Molding – implications and applications of the conventional and advanced techniques.										
TT • / 4			1	4.4						
Unit:4	· 1 . 1 . 47	MEMS Techniques and Application	1 1	12	hou	rs				
MEMS mate	rials-ME	SMIS challenges - scaling - scaling in geometry, rigid	body	/ dyn	ami	cs,				
electrostatic i	electrostatic forces, electromagnetic forces, electricity, fluid mechanics, neat transfer. Need for									
	MEMS-MEMS features-MEMS design limits and safety factors - MEMS future and									
applications,	merosys	stems and microelectronics-kecent trends in MEMS.								

Г

U	nit:5	NEMS Techniques and Applications	12 hours								
In	troduction	to NEMS and its architecture - carbon nanotube electronics - mod	deling - analysis								
ar	d simulatio	on - simulation of Actuators, FET, Pressure transducer - applica	tions and future								
ch	allenges.										
U	nit:6	Contemporary Issues	2 hours								
Ex	pert lecture	s, online seminars – webinars									
		Total Lecture hours	62 hours								
Bo	Book (s) for Study										
1	Nanostruc Scientific	tures & Nanomaterials Synthesis, Properties Applications, Guozi Publishing Private Ltd., (2004).	hong Cao, World								
2	Nanofabrication, Principles, Capabilities and Limits, Zheng Cui, Springer Science business media, (2008).										
3	MEMS an	d NEMS systems, Devices and Structures, Syergey Edward Lyshe	evski, CRC Press,								
	New York, (2002).										
4	MEMS and Microsystems Design and Manufacture, Tai Ran Hsu, Tata Mcraw Hill, (2002).										
5	Micro Ele	ctro Mechanical System Design, James J Allen, CRC Press-Taylor	& Francisl, New								
	York, (200	05).									
6	Micro and	Smart Systems, Ananthasuresh G. K, Vinoy. K.J, Gopalakrishn	an.S, Wiley India								
	Pvt Ltd, N	ew Delhi, (2012).									
Bo	ook (s) for l	Reference and a second se									
1	Foundation	ns of MEMS, Chang Liu, Pearson education India limited, (2006).									
2	MEMS, M	Iahalik N P, Tata McGraw-Hill Education, (2008).									
3	Marc. J, M	ladou, "Fundamentals of Microfabrication: The Science of Miniatu	irization",								
	CRC Press	s, (2002).									
R	elated Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1	1 <u>https://nptel.ac.in/courses/117/105/117105082/</u>										
2	2 <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3275&rep=rep1&type=pdf</u>										
		Coimbatore									
Cou	arse Design	ed By Dr C. Viswanathan e-mail viswanath	an@buc.edu.in								

875தப்பாரை உயாஜ EDUCATE TO ELEVATE

Mappin	g with Pr	ogramme	Outcome	es						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	L	М	S	S	L	L	L	М
CO2	S	S	S	S	S	М	М	L	S	S
CO3	S	S	S	М	S	S	М	L	S	S
CO4	S	S	Μ	S	М	L	S	S	S	S
CO5	S	S	Μ	S	М	L	S	S	S	S
S	Stro	ong		M	Medi	um		L		Low

Course	23D	GENETICS AND NANOBIOTECHNOLOGY	L	Т	Р	С			
(ore		4	0	0	4			
Prerequis	ite	Basic knowledge on Biology and Nanotechnology	Sylla Vers	bus ion	202 -202	21			
Course O	ojectives:		<u>. </u>	I					
1. Study	the central of	concepts of Molecular biology							
2. Decip	her the know	vledge on nanoparticle inaction with cell membrane							
3. Know	how to prob	be the nanoparticles inside the cell with developed technic	jues						
Expected	Course Out	comes:							
On the su	ccessful con	pletion of the course, student will be able to:							
1 Rem	ember the ce	ntral dogma of cell survival			K	2			
2 Und	erstand the p	rocess of transcription and its enzymology			K	2			
3 Understand the concept of triplet codon and its genetic importance in bringing up K2 protein structure									
4 Analyses the process of nanoparticle internalization inside the cell the structures									
5 Evaluate the process and interactions of nanoparticles with in the cellular structures									
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create									
		Q							
Unit:1 Molecular Biology 12 hour									
Fundame	ntals and Ce	entral Dogma of Molecular Biology - DNA replication,	Gene	Regu	latic	on,			
Mutagen	esis and DN	A Repair.							
				10					
Unit:2	tion in mal	Transcription	and n	12 DN/	hou	rs			
transcrip	tional proces	ses Reverse Transcription Antisense RNA and its signifi	anu n icance	IKINA	a, po	JSt			
transerip	lonur proces	ses. To verse Transcription. Thirdsonse Trivit and its signific	leanee						
Unit:3	ેંગ્	Translation		12	hou	rs			
Genetic	code - Dec	properties of genetic code and important properties	of ge	netic	coc	le.			
Translati	on in proka	aryotes and eukaryotes - post translational processing	ıg. İr	nhibit	ors	of			
replicatio	n, transcript	ion and translation.							
		ASULITION 24							
Unit:4	Cell M	Iembrane Interactions and Intracellular Trafficking of Nanoparticles in Cell		12	hou	rs			
Phagocy	osis, Clathri	n-mediated endocytosis (CME), Caveolae-dependent end	ocyto	sis, C	lathı	rin			
/caveolae	independe	nt endocytosis, Macropinocytosis. Cell organelles li	ike E	Indop	lasm	nic			
reticulun	, Golgi bodi	es and lysosomes.							
Unit:5		Probing Cellular Interactions of Nanoparticles		<u>12 h</u>	ours				
Confocal – PCR.	laser scanni	ng microscopy, Flow cytometry, ICP-MS, Western blott	1ng, P	CR a	nd F	ст 			
Unit:6		Contemporary Issues		2	hou	rs			
Expert le	ctures, online	e seminars – webinars		_					
	,								
	Total Lecture hours 62 hou								

Bo	ook (s) for Study							
1	Microbial Genetics, Freifelder, D., 2 nd Ed. Narosa Publishing House, New Delhi, (2006).							
2	Handbook of Biomedical Instrumentation – R.S. Khandpur, Tata McGraw Hill, (2003).							
Bo	ook (s) for Reference							
1	Microbiology, Prescott L M, J P Harley and D A Klein, 6 th edition, International edition,							
	McGraw Hill, (2005).							
2	Microbial Genetics, Maloy, S.R., Cronan, J.E. Jr. and Freifelider, D. 2 nd Ed. Jones and Bartlett							
	Publishers, (1994).							
3	Molecular cell biology, Darnell, Lodish, Baltimore, Scientific American Books, Inc., (1994).							
4	Pricinciples of Gene Manipulation, Primrose. S.B., Twyman R.M., Old. R.W. Blackwell							
	Science Limited, (2001).							
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https://dx.doi.org/10.3762%2Fbjnano.11.25							
2	https://www.ncbi.nlm.nih.gov/books/NBK10779/							
3	https://nptel.ac.in/courses/102/107/102107058/							
4	https://nptel.ac.in/courses/118/106/118106019/							
Cou	urse Designed By Dr P. Premasudha e-mail premasudha@buc.edu.in							
	50. 39							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	L	S	S	L	S	S	S
CO2	Μ	S	L	M	M	M	M	L 🔪	S	S
CO3	S	S	L	L	М	S	S	S	S	S
CO4	S	Μ	M	S	S	S	S	S	S	S
CO5	S	See	S	S	S	S	S	S	S	S
		2			AR U			10°		
S	Str	ong	29	Μ	Medi	um	Co.		1	Low
			~15.00				91	1		

Course code 2EA	NANOELECTRONICS AND	Т	Р	С		
Elective	NANOPHOTONICS	4	0	0	4	
Pre-requisite	Basic Physics Concepts	Syllabus	Version	2020 - 2	021	
Course Objectives:						
The main objectives of	this course are to:					
1. The rapid growth	of the integrated circuit (IC) industry h	as led to	the emer	gence of	nano	
microelectronics p	process engineering as a new advanced di	scipline. 7	Thus, the	re is a ne	ed to	
impart quality ed	ucation at a sufficiently advanced level	in the cu	rrent stat	te of art	Nano	
electronics and de	sign discipline.					
2. It provides an adv	anced level vast understanding to the device	e electronic	es for inte	egrated cir	rcuits,	
a foundation for	the device fabrication and various app	plication 1	n the fi	eld of se	ensors	
technology, optoel	lectronics, communication and nanotechnol-	ogy etc.				
E						
Expected Course Out	comes:					
1 Develop on oppr	ipietion for the concentual foundations und	0: Iorlying th	onorati	on		
1 Develop an appreciation for the conceptual foundations underlying the operation						
2 Understand the diverse electronic devices						
3 Practical underst	anding of engineering concepts and demo	nstrate and	lication	to	._	
get the academic	and industrial jobs	notrate up	meanon		K6	
4 Interact scientific	ally with industry both within and outside c	of a classro	om settin	g.]	K6	
5 Develop an appre	ciation of continuing educational and profe	ssional dev	elopmen	it.	K6	
K1 - Remember; K2 -	Understand; K3 - Apply; K4 - Analyze; K	5 - Evalua	te; K6 – (Create 🧹		
	E CONTRACTOR	1 2				
Unit:1	Basics of Nanoelectronics	T SN		12 h	ours	
Physical Fundamenta	ls: Electromagnetic fields and photons – Qu	antization	of action	n - Charge	and	
flux – Electrons beh	aving as waves (Schrodinger equation) -	- Electron	s in pote	ential we	lls –	
Photons interacting w	ith electrons in solids – Diffusion process -	Biological	l network	s – Biolo	gical	
neuronal cells on silic	on – DNA and quantum computers.				-	
(A)	19 minute			1		
Unit:2	Quantum Electronics		8	12 h	ours	
Quantum electronic d	evices - From class <mark>ical to quantum</mark> physics	s -Upcomi	ng electro	onic devic	ces –	
Electrons in mesosco	opic structure – Short channel MOS tra	nsistor –	Split gat	e transist	or –	
Electron wave trans	istor – Electron spin transistor – Quant	um cellula	ar autom	ate (QCA	A) –	
Quantum dot array	- Principles of single electron transistor	(SET) –	SET cir	cuit desi	gn –	
comparison between I	FET and SET circuit design. ELEVALE					
Unite?	Noncoloctronic Devices and Applicat	ana		10 h		
Vancelectronics with	tunneling devices Super conducting	devices	Tunn	12 II	mont	
technology - RTD -	Circuit design based RTD _Defect tolerant	t circuits	– runno Molecula	r electron	ics -	
Elementary circuits –	Flux quantum devices – Applications of su	per conduc	ting devi	ces	105	
Memory devices and	sensors – Nano ferroelectrics - ferroelec	etric rando	m acces	s memori	es –	
introduction – Fe R	AM circuit design – ferroelectric thin fi	lm proper	ties and	integratio	on –	
calorimetric sensors -	- electrochemical cells – surface and bulk	acoustic	devices -	- gas-sens	itive	
FETs – resistive ser	niconductor gas sensors – electronic nos	es – ident	ification	of hazar	dous	
solvents and gases - s	emiconductor sensor array – spintronics.					
Unit:4	Nanophotonics			12 h	ours	
Electromagnetic prop	perties of nanostructures - Wavelength an	nd dispersi	on laws	– Densit	y of	
states- Maxwell and	Helmholtz equations – Photonic Cryst	tals – De	finition	and type	s of	

photonic crystals - Photonic band-structure and photonic band gap - Propagation of light in periodic media – Brillouin zones - Band structure in periodic media – 1D case. **Fabrication of photonic crystals -** Photonic crystals by self-assembly - Photonic crystals by microfabrication - Photonic crystals with tunable properties.

Unit:5Biophotonics12 hoursInteraction of Light with cells and tissues - Nature of optical interactions (optical loss and optical transparency) - Optical properties of a tissue (Double integrating sphere experiment) - Light-induced processes in tissues - Autofluorescence, photochemical processes, thermal effects, photoablation, plasma induced ablation and photo disruption. Bioimaging -Biosensing - Upconversion nanoparticles. Bioderived materials (Baceriorhodopsin, Green fluorescent protein, DNA, Bio-objects and bio-colloids) - Bioinspired materials - Biotemplates (DNA and Viruses as templates).

Uı	nit:6		Contemporary Issu	es		2 hours				
Ex	pert lecture	es, online se	minars – webinars	. 0						
				Fota <mark>l Lecture h</mark>	ours	62 hours				
Bo	ook (s) for S	Study 📃								
1	Nanoelect	ronics and I	Nanosystems: from Transisto	rs to Molecular	Devices. K.Go	oser, P.				
	Glosekotte	er, J. Die <mark>nst</mark>	uhl, Springer, (2004).	N SVS	6.					
2	Nanoelect	ronics and]	nformation Technology: Adv	anced Electron	<mark>ic Materi</mark> als ar	nd Novel				
	Devices (2 nd edition), Rainer Waser (Ed.), Wiley-VCH Verlag, Weiheim (2005).									
3	Introduction	on t <mark>o Nano</mark> j	photonics, Sergey V. Gapone	nko, Cambridge	<mark>: Universi</mark> ty Pr	ess, New York,				
	ISBN-13 978-0-521-76375-2 (2010).									
4	4 Photonic crystals: Physics and Technology, (Eds.) C. Sibilia, T. M. Benson, M. Marciniak, T.									
	Szoplik, (ISBN: 978-88-470-0843-4) (2008).									
5	Introduction	on to Bioph	otonics, Paras N. Prasad, (Jol	nn Wiley and So	ons, New Jerse	ey), ISBN: 0-				
	471-28770)-9 (2003).	in the second							
		5		100						
Bo	ook (s) for l	Reference	A A Provention	all'	2					
1	Nano and	Molecular	Electronics Handbook, Edite	d by Sergey Ed	ward Lyshevs	ki, CRC Press,				
	(2007).	0	9		6.6					
			Commission	91						
Re	elated Onli	ne Content	s [MOOC, SWAYAM, NP]	TEL , Websites	etc.]					
1	https://np	otel.ac.in/co	urses/117/108/117108047/	2						
2	https://oc	w.mit.edu/	courses/electrical-engineering	g-and-computer	-science/6-701	-introduction-				
	to-nanoe	lectronics-s	pring-2010/readings/MIT6_7	01S10_notes.pd	<u>#f</u>					
3	https://np	otel.ac.in/co	urses/118/106/118106021/							
				1						
Co	ourse Design	ned By:	Dr. N. Ponpandian	e-mail	ponpandian	@buc.edu.in				

Mappin	Mapping with Programme Outcomes												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	S	М	S	S	М	М	S	S	S			
CO2	S	М	S	S	М	М	Μ	S	S	S			
CO3	S	М	S	М	S	S	S	S	S	S			
CO4	S	L	М	S	S	S	S	S	S	S			
CO5	S	М	S	М	М	S	S	S	S	S			

	Stroi	ng		Μ	Medium		L		Ι	_0
Course	code	2EB		NANOM	AGNETIC MAT	TERIALS	L	Т	Р	
]	Electiv	e			AND DEVICES		4	0	0	
Pre-rea	uisite		Basic u	nderstandi	ing in Physics.		Sylla	bus	202	20
		ivog					Vers	ion	-202	2
The mai	in object	tives of t	this course	e are to:						
1. To	unders	stand the	e basic n	nagnetic 1	parameters and	the importance	e of prope	ertv s	struc	tυ
rela	ations in	n determi	ining the a	absolute v	alue of these para	meters.	- F - F -	5		
2. To	unders	tand the	magneto-t	ransport i	n nanoscale syste	ms.				
3. To	provide	e a know	ledge of b	asic mech	nanisms for tunin	g the magnetic	properties			
					S. H.In					
Expecte	ed Cou	rse Outc	omes:	. 600-	0.00					
On the	succes	sful com	pletion of	the cours	e, student will be	able to:				
1 Gain in-depth knowledge in the concepts of magnetism at both micro and										
na na	nanoscale.									ζ.
2 G	Gain good knowledge in nanomagnetism and the advanced tools to study							k	Ċ	
3 U1	ndersta	nding the	various i	maging te	chniques to study	the magnetic	behaviors.		k	$\frac{1}{\zeta}$
4 Id	entitv f	he suitab	le applica	tions of t	he magnetic mate	rials based on	the function	nal		
pr	properties.								K	(
5 A1	Apply the knowledge to make various applications of nanomagnetic in data storage								<i>т</i>	
and biomedicine.									ľ	` (
K1 - R	ememb	er; K2 -	Understar	nd; K3 - A	Apply; K4 - Analy	ze; K5 - Evalu	iate; K6– (Create	e	
			10	la	35-				1	
Unit:1			192	(and	Introduction			12	hou	ır
Unit:1 Magne	etic fui	ndamenta	als –Anti	l ferromagr	Introduction netic materials	– Domains a	nd the ma	12 agnet	hou izati	II O
Unit:1 Magne proces	etic fui s– Coe	ndamenta ercivity o	als –Anti of fine pa	ferromagr articles –	Introduction netic materials Super paramage	- Domains an actism in fine	nd the ma particles -	12 agnet – Ex	hou izati chan	ur o g
Unit:1 Magne proces anisotr	etic fur s– Coe ropy - J	ndamenta ercivity of Induced	als –Anti of fine pa anisotropy	ferromagr articles – y in thin	Introduction netic materials Super paramagi films – Electron	- Domains an etism in fine transport in m	nd the ma particles - agnetic mu	12 agnet – Ex ulti-la	hou izati chan ayers	
Unit:1 Magne process anisotr Spin p	etic fur s– Coe ropy - 1 polarize	ndamenta ercivity o Induced d electror	als –Anti of fine pa anisotropy n tunnelin	ferromagr articles – y in thin t ag – Inter <mark>l</mark>	Introduction netic materials Super paramagi films – Electron ayer exchange co	- Domains an etism in fine transport in m oupling – Spin	nd the ma particles - agnetic ma relaxation	12 agnet – Ex ulti-la in ma	hou izati chan ayers agne	
Unit:1 Magne proces anisotr Spin p metalli	etic fur s– Coe ropy - I polarized ic layer	ndamenta ercivity of Induced d electron rs and mu	als –Anti of fine pa anisotropy n tunnelin ulti-layers	ferromagr articles – y in thin ng – Interl s - Nonequ	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy	- Domains an etism in fine transport in m pupling – Spin namics in later	nd the ma particles - agnetic mo relaxation rally define	12 agnet – Ex ulti-la in ma ed ma	hou izati chan ayers agne agne	
Unit:1 Magne proces anisotr Spin p metalli structu	etic fui s– Coe ropy - I polarized ic layer ires.	ndamenta ercivity of Induced d electron rs and mu	anisotropy n tunnelin ulti-layers	ferromagr articles – y in thin ag – Interl s - Noneq	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy	- Domains an letism in fine transport in m pupling – Spin namics in later	nd the ma particles - agnetic ma relaxation rally define	12 agnet – Ex ulti-la in ma ed ma	hou izati chan ayers agne agne	
Unit:1 Magne proces anisotr Spin p metalli structu	etic fun s– Coe ropy - l oolarized ic layer nres.	ndamenta ercivity of Induced d electron rs and mu	als –Anti of fine pa anisotropy n tunnelin ulti-layers	ferromagr articles – y in thin ng – Interl s - Noneq	Introduction netic materials Super paramage films – Electron ayer exchange co uilibrium spin dy	- Domains an etism in fine transport in m pupling – Spin namics in later	nd the ma particles - agnetic mu relaxation rally define	12 agnet – Ex ulti-la in ma ed ma	hou izati chan ayers agne agne	ti
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2	etic fun s- Coe ropy - I polarized ic layer ires.	ndamenta ercivity of Induced d electron rs and mu	anisotropy n tunnelin ulti-layers	ferromagr articles – y in thin ag – Interl s - Nonequ	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy	- Domains an letism in fine transport in m pupling – Spin namics in later	nd the ma particles - agnetic ma relaxation rally define	12 agnet – Ex ulti-la in ma ed ma 12	hou izati chan ayers agne agne	
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-s	etic fun s- Coe ropy - l oolarized ic layer nres.	ndamenta ercivity of Induced d electron rs and mu	dls –Anti of fine pa anisotropy n tunnelin ulti-layers del - Two	ferromagr articles – y in thin g – Interl s - Nonequ S S Na o termina	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy ILITEDIT 2- anomagnetism I spin electronics	- Domains an etism in fine transport in m pupling – Spin namics in later	nd the ma particles - agnetic mu relaxation rally define inal spin e	12 agnet – Ex ulti-la in ma ed ma 12 electr	hou izati chan ayers agne agne	II O B; ti ti II S
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sj Spin t	etic fun s– Coe ropy - l oolarized ic layer ures. pin cha tunnelir	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu	dls –Anti of fine pa anisotropy n tunnelin ulti-layers del - Two dy of fe	ferromagr articles – y in thin g – Interl g - Nonequ Na o termina rromagnet	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy ILITCOIL 2- anomagnetism I spin electronics tic and antiferro	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa	nd the ma particles - agnetic ma relaxation rally define inal spin e aces – Ph	12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer	hou izati chan ayers agne agne hou onics	in o g; ti ti In s o
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sj Spin t Electro	etic fun s- Coe ropy - I oolarized ic layer ures. pin cha tunnelir on Mic	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy	del - Two dy of fer	ferromagn articles – y in thin ag – Interl a - Nonequ Solution Na o termina rromagnet Absorptio	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy ILINCON P anomagnetism I spin electronics tic and antiferron n Spectroscopy	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa - X-ray Magne	inal spin e aces – Ph etic Linear	12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer	hou izati chan ayers agne agne hou onics nissi hrois	II O g; ti ti — II S O ST
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sj Spin t Electro (XML)	etic fun s- Coe copy - l colarized ic layer ures. pin cha tunnelir on Mic D) - X	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy -ray Mag	del - Two dy of fer anisotropy n tunnelin ulti-layers del - Two dy of fer - X-ray A gnetic Cir	ferromagr articles – y in thin a – Interl a – Nonequ Na o termina rromagnet Absorptio cular Dicl	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy <i>ILIRODI 2</i> anomagnetism I spin electronics tic and antiferro n Spectroscopy hroism (XMCD)	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa - X-ray Magnet - Temperature	nd the ma particles - agnetic ma relaxation rally define inal spin e aces – Ph etic Linear dependen	12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer • Dic ce of	hou izati chan ayers agne agne hou onics missi hrois	<u> </u>
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sj Spin t Electro (XML) Magne	etic fun s- Coe ropy - l oolarized ic layer ures. pin cha tunnelir on Mic D) - Xi etic Dic	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy -ray Mag hroism	dls –Anti of fine pa anisotropy n tunnelin ulti-layers del - Two dy of fer - X-ray A gnetic Cir	ferromagn articles – y in thin ag – Interl s - Nonequ Na o termina rromagnet Absorptio cular Dicl	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy ILIENTE 2- anomagnetism I spin electronics tic and antiferron n Spectroscopy hroism (XMCD)	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa - X-ray Magne - Temperature	inal spin e aces – Ph etic Linear	12 agnet – Ex ulti-la in ma ed ma ed ma electr otoer ce of	hou izati chan ayers agne agne hou onics nissi hrois	II O B; ti ti — II S O SI A —
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-s Spin t Electro (XML) Magne Unit:3	etic fun s- Coe ropy - I oolarized ic layer ures. pin cha tunnelir on Mic D) - X etic Dic	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy -ray Mag hroism	del - Two del - Two dy of fer anetic Cir	ferromagr articles – y in thin ag – Interl a - Nonequ o termina rromagnet Absorptio cular Dicl Fabrica	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy ILINGON 2 anomagnetism I spin electronics tic and antiferron n Spectroscopy hroism (XMCD) ation and Imagin	- Domains an letism in fine transport in m oupling – Spin namics in later - Three term magnet interfa - X-ray Magne - Temperature	nd the ma particles - agnetic ma relaxation rally define inal spin e aces – Ph etic Linear dependen	12 agnet – Ex ulti-la in ma ed ma 12 electr otoer • Dic ce of 	hou izati chan ayers agne agne hou onics nissi hrois X-r	IIOg; titi IIIs osta III
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sp Spin t Electro (XML) Magne Unit:3 Molect	etic fun s- Coe ropy - l oolarized ic layer nres. pin cha tunnelir on Mic D) - X etic Dic	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy -ray Mag hroism	del - Two dy of fer - X-ray A gnetic Cir	ferromagr articles – y in thin a – Interl a – Nonequ b v v v v v v v v v v v v v v v v v v	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy I JICODE 2 anomagnetism I spin electronics tic and antiferror n Spectroscopy hroism (XMCD) ation and Imagin magnetism - Par	- Domains an letism in fine transport in m pupling – Spin namics in later - Three term magnet interfa - X-ray Magnet - Temperature	inal spin e aces – Ph etic Linear agnets – (12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer • Dic ce of 12 Geon	hou izati chan ayers agne agne hou onics nissi hrois X-r	<u>ir</u> og; ti ti <u>- ir</u> s o sra <u>- ir</u> z
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sp Spin t Electro (XML) Magne Unit:3 Molect nanom	etic fun s- Coe ropy - l oolarized ic layer ures. pin cha tunnelir on Mic D) - X etic Dic	ndamenta ercivity of Induced d electron rs and mu unnel mo ng - Stu roscopy -ray Mag hroism nomagne – Fabric	del - Two dy of fer - X-ray A gnetic Cir	ferromagr articles – y in thin ag – Interl a - Nonequ o termina rromagnet Absorptio cular Dicl Fabrica soscopic 1 hniques s	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy Intron 2- anomagnetism I spin electronics tic and antiferron n Spectroscopy hroism (XMCD) ation and Imagin magnetism - Par caling – Charact	- Domains an letism in fine transport in m pupling – Spin namics in later - Three term magnet interfa - X-ray Magnet - Temperature	inal spin e aces – Ph etic Linear dependen	12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer • Dic ce of 12 Geon echni	hou izati chan ayers agne agne hou onics nissi hrois X-r	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sy Spin t Electro (XML) Magne Unit:3 Molecu nanom Imagin	etic fun s- Coe ropy - l oolarized ic layer ures. pin cha tunnelir on Mic D) - X etic Dic ular na nagnets ng mag	ndamenta ercivity of Induced of d electron rs and mu innel mo ng - Stu roscopy -ray Mag hroism - ray Mag hroism	del - Two del - Two dy of fer - X-ray A gnetic Cirr	ferromagn articles – y in thin ag – Interl a - Nonequ o termina rromagnet Absorptio cular Dicl Fabrica soscopic 1 hniques si oscopy –	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy I I I I I I I I I I I I I I I I I I I	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa - X-ray Magnet - Temperature g ticulate nanom erization using g – Lorentz M	inal spin e agnetic Linear dependen agnets – 0 relaxation rally define	12 agnet – Ex ulti-la in ma ed ma ed ma electr otoer Celectr otoer Celectr otoer 12 Celectr otoer - Dic Ceon echni – Ex	hou izati chan ayers agne agne onice nissi hrois X-r X-r	
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-sj Spin t Electro (XML) Magne Unit:3 Molect nanom Imagin Hologi	etic fun s- Coe ropy - l oolarized ic layer ires. pin cha tunnelir on Mic D) - X etic Dic ular na nagnets ng mag raphy o	ndamenta ercivity of Induced d electron es and mu unnel mo ng - Stu roscopy -ray Mag hroism nomagne – Fabric netic mi f Magnet	del - Two dy of fer - X-ray A gnetic Cir ets – Mes cation tech crospectro tic Nanost	ferromagn articles – y in thin ag – Interl a - Nonequ b v termina rromagnet Absorptio cular Dicl Fabrica soscopic 1 hniques si oscopy – tructures –	Introduction netic materials Super paramagn films – Electron ayer exchange co uilibrium spin dy I I I CONT 2 anomagnetism I spin electronics tic and antiferror n Spectroscopy hroism (XMCD) ation and Imaging magnetism - Par caling – Charact Optical Imaging -Magnetic Force	- Domains an letism in fine transport in m pupling – Spin namics in later - Three term magnet interfa - X-ray Magno - Temperature - Temperature - Jenne - Lorentz M Microscopy.	inal spin e aces – Ph etic Linear agnets – G y various to ficroscopy	12 agnet – Ex ulti-la in ma ed ma ed ma 12 electr otoer • Dic ce of 12 Geon echni – E	hou izati chan ayers agne agne hou onics nissi hrois X-r khou netric ques lectr	
Unit:1 Magne proces anisotr Spin p metalli structu Unit:2 Two-s Spin t Electro (XML) Magne Unit:3 Molect nanom Imagin Holog	etic fun s- Coe ropy - l oolarized ic layer ires. pin cha tunnelir on Mic D) - X etic Dic ular na nagnets ng mag raphy o	ndamenta ercivity of Induced of d electron rs and mu annel mo ng - Stu roscopy -ray Mag hroism -ray Mag hroism - Fabric metic mi f Magnet	del - Two dy of fer - X-ray A gnetic Cir ets – Mes cation tech crospectro tic Nanost	ferromagn articles – y in thin ag – Interl a - Nonequ Solution Na o termina rromagnet Absorption cular Dicl Fabrica soscopic 1 hniques si oscopy – tructures –	Introduction netic materials Super paramagi films – Electron ayer exchange co uilibrium spin dy I JICONT 2 anomagnetism I spin electronics tic and antiferror n Spectroscopy hroism (XMCD) ation and Imagin magnetism - Par caling – Charact Optical Imaging -Magnetic Force	- Domains an letism in fine transport in m pupling – Spin namics in later a – Three term magnet interfa - X-ray Magne - Temperature g ticulate nanom erization using g – Lorentz M Microscopy.	inal spin e agnetic Linear e dependen agnets – 0 rally define	12 agnet – Ex ulti-la in ma ed ma ed ma <u>12</u> electr otoer • Dic ce of <u>12</u> Geon echni – E	hou izati chan ayers agne agne hou onics nissi hrois X-r hou netrio ques lectr	<u> </u>

transfer modes – Programmed I/O – Direct memory access – Ultra DMA – Data addressing – Standard CHS addressing – Extended CHS addressing – Logical Block Addressing – Magnetic recording- Principles of magnetic recording - Magnetic digital recording - Perpendicular recording - Magneto-Optic recording - Magnetic media – Kerr effect – Faraday effect.

Unit:5	Magnetic Structures and Application	12 hours
Magnetic sen	sors and Giant Magnetoresistance - Optically transparent materials	- Soft ferrites-
Nanocomposi	ite magnets - Magnetic refrigerant - High TC superconductor - F	erro/biofluids-
Biomedical a	applications of magnetic nanoparticles - Diagnostic applications	- Therapeutic
applications -	Physiological aspects - Toxic effects.	

Unit:6	Unit:6 Contemporary Issues					
Expert lecture	s, online seminars – web <mark>inars</mark>					

			and and the second seco	otal Lecture hours	62 hours				
Bo	ook (s) for S	Study 🧹	B	N 0 V					
1	Hans .P.O	, and H <mark>ops</mark>	ter. H, "Magnetic Microscopy	of Nanostructures", S	pringer, 2004.				
2	Bland. J.A	C, and B.	Heinrich. B, "Ultra thin Magr	netic Structures III – F	undamentals of				
	Nanomagr	netism", <mark>Sp</mark>	ringer, 2004.						
3	Nicola. A.	S, "Ma <mark>gne</mark>	tic Materials: Fundamentals and	nd Device Application	ns", Cambridge				
	University Press, 2003.								
Book (s) for Reference									
1	1 J. M. D. Coey, Magnetism and Magnetic Materials, Pearson Education, 2010.								
2	2 B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, Inc,								
	2009.								
			2 mil	SIR					
Re	elated Onlin	ne Conten	ts [MOOC, SWAYAM, NPT	[EL, Websites etc.]	3				
1	https://w	ww.youtub	e.com/watch?v=QQZ6EGf0Ju	18	S				
2	https://np	otel.ac.in/co	ourses/115/106/115106061/						
3	https://np	tel.ac.in/co	ourses/115/103/115103038/	0 A ²					
			Coimbatore	6					
Co	ourse Design	ned By:	Dr. N. Ponpandian	e-mail pon	oandian@buc.edu.in				
			SILLAR I	UNITED F					

EDUCATE TO ELEVATE

Mapping with Programme Outcomes												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	S	М	S	S	М	М	S	S	S		
CO2	S	М	S	S	М	М	М	S	S	S		
CO3	S	М	S	М	S	S	S	S	S	S		
CO4	S	L	М	S	S	S	S	S	S	S		
CO5	S	М	S	М	М	S	S	S	S	S		
S	Stro	ong		Μ	Mediu	ım		L		Low		

Cour	se code	23P	PRACTICAL – II –	SYNTHE	SIS AND	L	Т	Р	С	
	Core		CHARACIER NANAMAT	ZATION FERIALS	OF	0	0	4	4	
_			Basic knowledge and under	rstanding i	n	Svlla	bus	202	20	
Pre-r	equisite		Nanoscience.	istantaning i		Vers	ion	-202	21	
Cour	se Objec	tives:								
Stu	dents get	to know	the meaning of the "nano" in	correlation	n to materials – t	hey u	nderst	and	the	
mea	aning of t	heir size	e in comparison to bulk mate	rials, atom	s and molecules	. They	y lear	n at	out	
spee	cific phsy	vco-chem	nical properties of nanomateri	ials and rel	lated applications	s. The	y lear	n ba	asic	
phy	sical tech	nniques a	and chemical synthesis metho	ods for the	preparation of	nanon	nateria	als,	and	
basi	ic proced	ures for	surface functionalization and	coating of	nanomaterials.	They g	get an	insi	ght	
into	o characte	rization	methods for nanomaterials.							
Evno	atad Can	reo Out	nomos							
On t	the succes	sful com	upletion of the course student	will be ab	le to:					
1	Understa	$\frac{1}{nd}$ the	manning of the expression n	anomateria	als in comparison	n to h	ուլի	K	-1	
1	materials	atoms a	and molecules	anomateria			uik		.+	
2	Basic knowledge on physical and chemical procedures for the fabrication and K2									
	synthesis of nanomaterials									
3	Knowledge of the characterization methods of nanomaterials, the limitations									
	related to	their siz	ze and interpretation of the res	sults						
4	Knowledge of basic surface functionalization and coating procedures for K3									
	nanomate	erials	S. A CANE	1.00						
5	Knowled	ge on	interparticle interactions and	d assembl	ly of nanopartie	cles i	nto			
V 1	Complex	structure	Understand: K3 Apply: K4	Analyza	K5 Evoluoto: K	6 Cr	aata	-		
	Kemenn)c1, K 2–	Onderstand, K5- Appry, K4-	· Allalyze,	KJ- Evaluate, K	0-01	eate			
Prad	ctical			and the						
1	Synthe	sis of Au	Ag nanoparticles using co-pr	ecipitation	method.	7				
2	Synthe	sis of Cd	S nanoparticle using hydrothe	ermal proce	ess.		7			
3	Synthe	sis of Zn	O nanoparticles using sputteri	ing process	s. S					
4	Synthe	sis of Ti	O ₂ nanoparticles using sol-gel	process.	Co					
5	Synthe	sis of Fe	2O3nanofibres using electrospi	inning	AL					
6	Prepara	tion of V	WO ₃ nanostructures using mic	crowave sy	nthesis.					
7	To opti	mize the	concentration of nanoparticle	es disperse	d solution using V	JV-vi	S			
	spectro	scopy.	COCATE TO E	AU	1 .					
8	Fabrica	tion of p	orous alumina or anodized all	umina tem	plate.			5.7		
9	10 find Visible	tronomi	cal band gap of the given sem	iconductin	g materials by m	easuri	ng U	V -		
	To find	the aver	rage grain/crystallite size unit	cell naran	neters microstrai	n hv r	ecord	ing		
10	the X-r	av diffra	ction pattern of the given sam	ple.	leters, merostra	noyi	ceord	<u>6</u>		
11	Isolatio	on of chro	omosomal DNA from microbe	es						
	Fractio	nation ar	nd Size Determination of nucl	eic acids a	nd proteins –					
12	(i) A	Agarose	Gel Electrophoresis and		-					
	(ii) S	SDS - PA	AGE Electrophoresis							
13	Estima	tion of P	rotein – Bardford Method							
14	Separat	tion Tech	niques: Chromatography (i)	<u>FLC and (</u>	ii) Column					
15	Antibic	tic Susc	eptibility Test - Kirby Bauer 7	l'echnique	Γ					
Cours	se Design	еа ву		e-mail						

Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	S	S	S	S	S
CO2	S	S	L	L	S	S	S	S	S	S
CO3	S	S	S	М	S	M	S	S	S	S
CO4	S	S	S	S	S	L	S	S	S	S
CO5	S	S	S	S	S	M	S	S	S	S
S	Strong			Μ	Medium			L		Low

Course Code 33A	NANOTECHNOLOCY IN HEALTH SCIENCE	L	Τ	P	С					
Core	NANOTECHNOLOGT IN HEALTH SCIENCE	4	0	0	4					
Pre-requisite	This course requires basic knowledge in material Physics, Chemistry and Biotechnology to understand the diverse nature of nanomaterials and their applications.	Sylla Vers	bus ion	202 -202	21					
Course Objectives:				<u> </u>						
 The course provi application to hea class room through Aim to cater stude science. Aims to provide medicine. 	 application to health science and technology. It includes active participation of student in class room through in-depth discussion sessions, presentation and a group projects. 2. Aim to cater students from different disciplines to understand the interdisciplinary nature of science. 3. Aims to provide knowledge and recent development in nanotechnology in regenerative medicine. 									
Expected Course Out	com <mark>es:</mark>									
On completion of the	course the student should able to:									
1Understand the concepts begin usage of nanoma er a s r ir a th science.K3										
2 Describe structure	and function of nanomaterials.			k	<u>3</u>					
3 Understand and account for the design strategies and have ceale phenomenon K4 nanomedicine										
4 Explain strategies behind drug development and its mode of action K										
5 Understand and describe the design and function of nano-carriers for drug and gene K5 delivery										
K1 - Remember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Create	5						
	- Martine			4						
Unit:1	Elements of Biomaterial Science		12	hou	rs					
Introduction of biom ceramics, polymers Biological-Mechanical- Smart gels and their pro	aterials science-Definition and classification of bio and nanocomposites-Properties of biomaterials (Pl Electrochemical properties) - Nano-scale phenomena operties.	omater nysica in b	rials-1 I-Che iomat	neta mica terial	ls, al- ls-					
ેંગ	STAR UN									
Unit:2	Materials for Bone and Dentistry		12	hou	rs					
Materials in Orthopedics: Structure and composition of bone- Conventional materials for orthopedics-Orthopedic nanomaterials-Biological properties of bone grafts-Alloplastic materials- Bone stabilizers-Artificial implant devices-Implant failure. Dental materials: Dental anatomy-Characteristics of oral environment - Classification of dental restorative materials-Dental material science-Bonding agents-Principles of adhesion-Resins- Dental ceramics-Cements-Glass ionomers-Dental implant devices.										
Unit:3	Nanobiomaterials and Tissue Engineering		12	hou	rs					
Principles of tissue engineering-Hard and soft tissue engineering-Nanobiomaterials for artificial cells-Scaffolds for tissue engineering-Materials-Fabrication techniques-Synthetic matrices for bladder reconstruction; Nanoparticles-Magnetic nano beats-Artificial skin; Composite grafts-Skin substitutes-Construction of small blood vessel; Production of retrovirus-Collagen gel scaffolds-Implantation-Silicone materials; Breast and genital implants.										
TI 4 4	D		10	1.						
Unit:4	Basics of Nanomedicines		12	hou	rs in					
nanomedicines-transpo binding and uptake	rt of nanoparticles across the biological barriers, para of nanoparticles size, shape, surface charge, protein	ano-st ameter coro	rs aff na, s	fectii fectii surfa	ng .ce					

moo nan	modification-Clinical translation of nanomedicines: Preclinical and clinical considerations of nanomedicines-Regulation of nanomedicines.								
		0							
U	nit:5			R	egenerativ	e Medici	ne		12 hours
Intr	oduction to	regen	nerativ	e medicir	ne-Methods	of cell b	based therap	y-Stem cell	s-Molecular and
cell	ular based	of orga	an dev	velopment	-Therapeut	ic uses of	f stem cells	-Molecular b	bases of disease-
Bio	-artificial c	organs;	; Artif	ricial pan	creas-Lever	-Ear-Hea	rt-Ethics-Cu	urrent issues	s in patent law-
Fro	m concept t	o mark	ket (R	egenerativ	ve products)				-
	-								
U	nit:6			(Contempor	ary Issue	es		2 hours
Exp	pert lectures	, online	e sem	inars – we	ebinars				
							Total Lectu	are hours	62 hours
						51 m			
Bo	ook(s) for S	tudy			ຄືອັນຕາມ	~\$265	16		
1	Biomateria	al scier	nce a	n introduc	<mark>ction</mark> to ma	terials in	medicine,	<mark>Bud</mark> dy D. R	atner, Allans S.
	Hoffman,	Frederi	i <mark>ck J.</mark>	Schoen, J	ack E. Lem	ons, 2004	4, ISBN: 0-1	<mark>12-5</mark> 82463-7	•
2	Biomecha 2004. ISB	nics an N: 978	nd Bio 8-1-84	materials 882-663-2	in Orthoped	lics, Don	ninique G. P	Poitout, 2 nd e	dition, Springer,
3	Advanced Dental Biomaterials, Zohaib Khurshid Shario Naieeb Muhammad Sohail								
	Zafar Farshid Sefat, 1st edition, 2019, ISBN: 9780081024768.								
4	Nanobiomaterials in Hard Tissue Engineering, Alexandru Mihai Grumezescu, Volume 4,								
4	2010, ISBN: 9/80323428620.								
4	4 Stem Cells & Regenerative Medicine, Audet, Julie, Stanford, William L, Springer Publications, 2009, ISBN: 978-1-59745-060-7.								
5	5 Tissue engineering, second edition, Hansjorg Hauser, Martin Fussenegger, 2007, ISBN: 978-81-8489-248-2								
6	Principles Nerem, 3 ^{rc}	of Reg dition	genera on, 20 1	tive Medi 18, ISBN:	cine, Antho 978012809	ony Atala 98806.	, Robert Lar	iza, Tony M	ikos, Robert
		0		14			182		
Bo	ook (s) for l	Refere	ence		WAD	NN		6	
1	Biomateria	als, Suj	jata V	. Bhat, Al	pha Science	e Internat	ional, 2005,	ISBN: 1842	2652079.
2	Materials	for Bi	liomed	lical Eng	ineering: N	Vanobiom	aterials in	Tissue Eng	ineering Kindle,
3	Basic De	ntal Ma	lateria	ls. Manap	pallil John.	4th editio	on. 2016. IS	BN: 10-978	9352500482.
4	Nanobiom	aterials	ls in S	Soft Tissu	ie Engineer	ring, Ale	xandru Mił	nai Grumeze	escu, Volume 4,
5	2016, 978 The Clini	- 0-323 - ical Na	- 4286 Janom	5-1. edicine F	Jandbook	By Sara	Brenner	CRC Press	2017. ISBN:
	14398347	<u>92.</u>			<u> </u>			and the	
6	Foundation 97801237	n of 85626.	Rege •	nerative	Medicine,	Anthon	y Atala,	^{1th} edition,	2009, ISBN:
Re	elated Onli	ne Con	ntents	[MOOC	, SWAYAN	A, NPTE	L, Website	s etc.]	
1	https://oc	w.mit.	<u>.edu</u>						
2	https://ch	almers	<u>s.instr</u>	ucture.com	<u>n</u>				
3	https://w	ww.mc	ooc-lis	st.com					
4	https://w	ww.cla	asscen	tral.com					
							ſ	r	
Οι Οι	urse Design	ed By	Dr A	A.M. Ball	lamuragan		e-mail	<u>balamuru</u>	gan@buc.edu.in

Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	L	S	S	М	L	S	S	Μ
CO2	S	S	М	S	S	S	М	S	S	М
CO3	S	S	М	М	S	М	S	S	М	S
CO4	S	S	L	S	М	S	S	S	М	L
CO5	S	М	М	М	S	S	S	S	S	Μ
S	Stro	ong		Μ	Mediu	ım		L		Low

Course code	33B	NANOTECHNOLOGY FOR ENERGY	L	Т	Р	С			
Сог	re	CONVERSION AND STORAGE DEVICES	4	0	0	4			
Pre-requisit	e	Physics/Chemistry/Nanoscience/Allied chemistry/Applied Chemistry as a Major Subject During Graduate Programme.	Sylla Vers	bus ion	202 -202	0 21			
Course Obj	ectives:								
1. To unde	erstand the	basic concepts of energy systems							
2. Study th	ie fundame	ental concepts of energy conversion systems							
3. To learn	ning the dil	terent energy storage methods							
4. Different semiconducting materials introduced to the students									
Expected Co	ourse Out	comes:							
On the succ	essful com	pletion of the course, student will be able to:							
1 Remen	1 Remember the basic concepts of energy conversion systems K1								
2 Apprai	se the wor	king of fuel cells			K	3			
3 Understand the photovoltaic cells						2			
4 Demor	strate the	working of Solar cells			K	4			
5 Apprai	se the oxid	es of semiconductor materials for green energy device			K	5			
K1 - Reme	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6– Create								
Unit:1	Unit:1 Fundamental Concepts in Electrochemistry 12 hours								
Electrocher	nical <mark>C</mark> e	ll, Faraday' <mark>s law</mark> s, Electrode Potentials, Therr	nodyı	namic	s	of			
electrochen	nical <mark>cell</mark> s	, Polarization losses in electrochemical cells, Electro	ode p	roces	s ai	nd			
kinetics, El	ectrical do	uble layer, Photoelectrochemical cell, thermoelectric effe	ct.						
Unit.2		Enorgy Conversion Systems		12	hau	140			
Unit:2	Challenge	energy conversion Systems	 hemi/	14 cal E	nerg	rs v			
Conversion	Systems	Fuel Cells Principles and nanomaterials design for	Proto	n exc	han ¹	y, ge			
membrane	fuel cells	(PEMFC): Direct methanol fuel cells (DMFC): Solid	-oxid	e fue	l cel	lls			
(SOFC), Ci	urrent statu	s and future trends.							
		Coimbatore							
Unit:3		Photovoltaic Systems		12	hou	rs			
Principles	of photovo	oltaic energy conversion (PV), Types of photovoltaic	Cells,	Phys	sics	of			
photovolta	c cells, (Organic photovoltaic cell cells, thin-film Dye-Sensiti	zed S	Solar	Cel	is,			
Quantum Heterojung	tion (RHI	Sensitized Solar Cells (QD-SSC), Organic-Inorgan	IC H	ybria	Вu	IK			
Tieterojune	uon (DHJ-	SC) Solar cens, current status and future trends.							
Unit:4		Energy Storage System - Batteries		12 ho	ours				
Issues and	Challeng	es of functional Nanostructured Materials for electro	chemi	cal H	Energ	gy			
Storage Sy	stems, Prir	nary and Secondary Batteries (Lithium-ion Batteries), Ca	athode	e and	ano	de			
materials,	Nanostruc	tured Carbon-based materials, Nano-Oxides, Novel	hybri	d ele	ctro	de			
materials, C	Current stat	us and future trends.							
TT 1/ =									
Unit:5	Elostro al-	Electrochemical Capacitors	D	$\frac{12}{1}$	hou	rs			
materials	lesion M	uncar supercapacitors, electrical double layer model	, rfil vr Ne	ano	s al wide	u se			
Conducting	nolvmere	hased materials. Current status and future trends	71 INČ	ui0 (<i>i</i> Alut	<i>.</i> o,			
	- Polymors	eases indertais, carrent status and future tiends.							

U	nit:6		Contemp	orary Issues		2 hours					
Exp	pert lectur	es, online	e seminars– webinars								
						Γ					
	Total Lecture hours 62 hours										
Bo	BOOK (S) IOF Study										
1	Allen J Faulkne	.Bard ar r, 2 nd Edit	id Larry R Electroc ion John Wiley & Son	hemical methods: F s. Inc, (2004).	undamentals a	and Applications,					
2	2 D. Linden. Thomas B. Reddy, Handbook of Batteries, 3 rd Edition, McGraw-Hill, New York, (2002).										
3	3 B.E. Conway, Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic Plenum publisher, New York, (1999).										
4	4 C. Brabec, V. Dyakonov, U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technology, 2 nd Edition, Wiley VCH, (2014).										
5	5 J. Larmine and A. Dicks, Fuel Cell System Explained, John Wiley, New York, (2000).										
Bo	Book (s) for Reference										
1	Science Manthir	and Te am, Kulw	chnology of Lithiun ver Academic Publishe	m Batteries-Material er, (2000).	s Aspects: A	n Overview, A.					
2	M. S. V (1982).	Vhittingh	am, A. J. Jacobson, I	ntercalation Chemistr	ry, Academic I	Press, New York,					
3	M. Wak Wiley –	tihara, O. VCH, We	Yamamoto, (Eds.) Li einheim, (1998).	thium Ion Batteries: F	Fundamentals a	nd Performance,					
			in the		1 1 10-						
Re	elated Or	nline <mark>Con</mark>	tents [MOOC, SWA]	YAM, NPTEL, Webs	site <mark>s etc.]</mark>						
1	https://r	ptel.a <mark>c.in</mark>	/noc/courses/noc19/SI	EM2/noc19-ch26/							
2	https://r	ptel.ac.in	/courses/112/107/1121	107283/							
3	https://r	ptel.ac.in	/courses/102/107/1021	107058/							
			and the second	There is							
Cou	arse Desig	gned By	Dr P. Sakthivel	e-mail	sakthivel.p@	buc.edu.in					
	So WHAR UNINE Coleman										

Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	Μ	MPLI	JIMOU	2-L	S	L	S	S
CO2	S	М	М	-SPUCA	re 10 el	M	S	М	S	S
CO3	S	L	М	L	S	Μ	S	М	S	S
CO4	S	М	L	S	L	М	S	L	S	S
CO5	S	М	М	S	S	М	S	S	S	S
S	Stro	ong		Μ	Mediu	ım		L		Low

Course code	33C	NANOSENSORS AND LOT BASED SENSORS	L	Т	P	С			
Core		HAROSERSONS AND INT DASED SENSONS	4	0	0	4			
Pre-requisite		Basic knowledge in nanomaterials, sensors and	Sylla	bus	2020) -			
		internet.	Versi	ion	202	1			
Course Objec	tives:			<u> </u>					
1. Understan	na the ba	sic transduction principles and parameters and character.	Dhuei	or ser	isors	; hio			
2. Udili ilis	ors	The components, fabrication and operation of the	Fliysi	0-010	-0110	010			
3 Identify s	uitable s	ensors suitable for various applications							
4. Evaluate	the figur	es of merits of a nanosensor.							
5. Use Inte	rnet of	Things (IOT) to enable combination of nanosensor	s for	real	w	orld			
applications.									
Expected Cou	ırse Out	com <mark>es:</mark>							
On the succes	ssful con	apletion of the course, student will be able to:							
1 Identify	and ur	derstand the various components of nanosensors a	nd th	neir	K	2			
characte	ristics.	15 6 6 6							
2 Use vari	ous nanc	structured materials for the fabrication of nanosensors fo	r vario	ous	K	3			
applicati	ons <mark>.</mark>								
3 Examine	e or <mark>eva</mark> lı	ate the performance parameters of the nanosensors.			K	4			
4 Develop	smart a	and remote assessable nanosensors by combining In	ternet	of	K	6			
Things .									
5 Improve the sensor properties by tuning the functional properties of the materials.									
K1 - Remem	ber; K 2	- Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	<u>K6– (</u>	Create	2				
		e and a							
Unit:1		Sensor Principles		12	hou	rs			
Active and	passive	sensors - static characteristic - accuracy, error, prec	Ision,	reso		n,			
response tim		y, noise, drift, detection limit - reproducibility, hys	cordu	S, [Sla ar fii	101111 ret ai	.y, nd			
second order	sensors	ery time, dynamic range - dynamic characteristics - zer	0 Olu	<i>-</i> 1, 111	st a	IU			
Photoelectric	effect -	photo dielectric effect - photoluminescence effect - ele	ctrolu	mine	scen	ce			
effect - cher	nilumine	escence effect - Barkhausen effect - Hal effect - Ettir	ishaus	sen e	ffect	-			
thermoelectr	ic effect	- peizoresistive effect – piezoelectric effect - pyro	electr	ric et	ffect	-			
Magneto-me	chanical	effect (magnetostriction) - Magneto resistive effect.							
		SOATE IU CLETT							
Unit:2		Physical Sensors		12	hou	rs			
Mass sensor-	 Nanogr 	am Mass Sensing by Quartz Crystal Microbalance - Disp	olacen	nent s	ensc	or-			
Electron Tu	nneling	Displacement Nanosensors; Magnetomotive Displacement	ent Na	anose	nsor	· -			
Piezoresistiv	e and P	iezoelectric Displacement Nanosensors,- Force sensor	- Fe	emtor	iewto	on			
Force Sensor	rs- Press	ure sensor - Membrane-Based CNT Electromechanical F	ressu	re Se	nsor	_			
CNT Flow	er – Tun Sonsor f	ar Jonic Solutions Temperature sensor CNT based	r - r	OW SO		[- 			
Temperature	Nanose	on tome solutions – remperature sensor – CNT based	I Kesi Ligh	t sei	LU	~-			
CNT/Polyme	er Nanoo	composite as Conductivity Response Infrared Nanosens	sor - '	Zinc	Oxi	de			
Nanorods ba	sed Res	istive UV Nanosensors.		v	CAR				
Unit:3		Chemosensors		12	hou	rs			
Gas Sensing	g with	Nanostructured Thin Film, Adsorption on Surfaces,	Con	ducto	meti	ic			

transducers Suitable for Gas Sensing, Gas Reaction on the Surface, Effect of Gas Sensitive Structures and Thin Films- Metallic Nanoparticle Based Gas Sensors - Metal Oxide Gas Sensors - Carbon Nanotube Gas Sensors - Porous Silicon-Based Gas Sensor - Organic Polymer Film–Based Gas Sensors - Nanosensor Arrays - Nanoelectronic Nose – Optochemical Nanosensors.- Nanosensors Based on Surface-Enhanced Raman Scattering (SERS) - Colloidal Surface plasmon resonance (SPR) Colorimetric Gold Nanoparticle Spectrophotometric Sensor.

Unit:4Biosensors12 hoursNanoparticle-Based Electrochemical Biosensors – DNA enabled biosensors - CNT-Based
Electrochemical Biosensors - Functionalization of CNTs for Biosensor Fabrication Quantum
Dot-Based Electrochemical Biosensors - Nanotube- and Nanowire-Based FET Nanobiosensors
- Cantilever-Based Nanobiosensors - Optical Nanobiosensors.

Unit:5	IoT Based Senso	rs	12 hours				
Internet of th	ings – Building blocks of IoT, Characteris	tics of IoT - Design of IoT -	connectivity				
- mobile-satellite-Bluetooth -Wi-Fi - Wimax- IoT enabled technologies - IoT communication							
models -Internet of nano things - sensor network – Applications – Agriculture – Transport –							
Environment	– Health care – wearable devices.						

Unit: 6	Contemporary Issues	2 hours
Expert lecture	es, online seminars– webinars	

Total Lecture hours		62	hours
	2		

Bo	ok (s) for Study								
1	Nanotechnology-Enabled Sensors, Kourosh Kalantar-zadeh, Benjamin Fry, Springer, New								
	York, (2010).								
2	Nanosensors: Physical, Chemical and Biological, Vinod Kumar Khanna, CRC,(2012).								
3	Internet of Things: A hands on approach, A. Bagha, V. Madisetti, Bagha and Madisetti								
	Publishers,(2014).								
Bo	Book (s) for Reference								
1	Teik-Cheng Lim, Nanosensors: Theory and Applications in Industry, Healthcare and								
	Defense, CRC,(2011).								
2	Kevin C. Honey church, Nanosensors for Chemical and Biological Applications: Sensing								
	with Nanotubes, Nanowires and Nanoparticles, woodhead publishing (2014).								
3	Biosensor, Rajmohan Joshi, Isha Books, New Delhi, (2006).								
1	Chamical sansors and Piesensors Prain P. Eggins, John Wiley, New York (2002)								
4	Chemical sensors and Biosensors, Bran K. Eggins, John-Whey, New Tork, (2002).								
5	Smart Biosensor Technology, Bassi.A.S and Knopf.G.K, CRC Press, New York, (2007).								
6	Sensors: Principles and Applications, Peter Hauptmann and Tim Pownall, Prentice Hall,								
	(2003).								
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https://onlinecourses.nptel.ac.in/noc19_ee41/preview								
2	https://nptel.ac.in/courses/108/106/108106165/								
3	https://nptel.ac.in/courses/115/107/115107122/								
4	https://nptel.ac.in/courses/106/105/106105166/								
Cou	rse Designed By Dr R. T. Rajendrakumar e-mail rtrkumar@buc.edu.in								

Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	М	S	М	М	М	L	S
CO2	М	S	М	S	S	М	L	S	М	L
CO3	М	L	L	S	М	S	М	М	L	М
CO4	М	L	L	L	М	S	L	S	S	L
CO5	М	L	М	L	L	М	L	М	M	S
S	Stro	ong		M	Medi	um	-	L		Low

Cou	rse code	33D	ADVANCES IN NANOBIOTECHNOLOGY	L	Т	P	С		
Pre-	Core requisite		Understanding of Nanotechnology concepts and biology	Sylla Vers	bus ion	202 -202	20 21		
Cou	rse Objec	tives:			•				
1.	Understan	d the p	rinciples of drug delivery systems and control of vari	ed pa	arame	ters	for		
	effective of	lrug deli	very						
2.	Gain know	vledge o	n the mode of action of nanoparticle activity inside the ce	ellular	struc	ture			
3.	Inculcate	the conce	epts of advances in Nano therapeutics						
Exposted Course Outcomes:									
Exp On	the succes	sful com	pletion of the course student will be able to:						
1	Rememb	or the ele	pretion of the course, student will be use to:			K	1		
2	Lindorato	nd the m	ada af action of nononorticles and it's in with to visitive				.1 .)		
2	Understa	$\frac{1}{1}$	ode of action of nanoparticles and it's in vitro toxicity as	says		K V	2		
3	Recent de	evelopm	ents and understanding the available therapy in cancer tre	eatmei	nt	K	2		
4 Explore and study the possibility of applying and analyze varied nanoparticles						K	4		
5	Understa	nding of	most recent advances in Nanobiotechnology with novel			K	2		
techniques									
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create									
Unit:1 Principles of Drug Delivery Systems 12 hours									
Mo	odes of dru	ıg d <mark>elive</mark>	ry, Absorption distribution metabolism excretion chara	cterist	tics of	f dru	ıgs,		
Co	ntrolled di	ug deliv	ery - site specific drugs, Barriers for drug targeting -	passiv	ve and	1 ac	tive		
tar	geting, Stra	ategies fo	or site specific drug delivery.						
			to the second is						
Un	it:2	6	Toxicity Assays and their Principles		12	hou	rs		
Ce	ll viability	, LDH r	elease, ROS production, Morphological observation, M	embra	ane po	oten	tial,		
Liv	ve/Dead as	say, Con	tet Assay, Cell cycle analysis and Apoptosis detection by	flow	cytor	nete	r		
Un	it.3		Nanoparticles and Cancer Therapy		12	hou	re		
	ncer and	its type	s: Mechanisms of progression in Cancer: Cellular t	rafficl	<u>14</u> zing	Car	u s		
inv	vasion N	lioration	Angiogensis and Metastasis Chemotherapy	Imr	nunot	her?	nv		
Ph	otodvnami	c Therar	y (PDT). Photothermal Therapy (PTT). Magnetic Hyr	erthe	rmia	(MH	гру, IT).		
Hi	gh Intensit	y Focuse	d Ultrasound (HIFU). E 10 EUFY (1997) and and any			(/,		
Un	it:4		Targeted Drug Delivery		12	hou	rs		
Cla	assification	of targe	ted drug delivery systems, Bioconjugation, Nanoparticles	s surfa	ace				
ma	odification	- PEGyla	ation, Gold nanoparticles for drug delivery, Magnetic nan	opart	icles a	as dr	ug		
carriers.									
TT	:4.5)	Die Dwinting (Thus Dimensional D' D' 4')		10	b -			
Un	IC:5		Bio -Printing (Inree Dimensional Bio-Printing)	2D	12 hio.m	nou	irs		
	hniques 1	- nisio	based bio-printing Droplet-based bio printing Lagar b	لا لمعود	vio-p	i IIIII intir	ng		
De	Design Requirements for 3D Bio_printing. Magnetic Personance Imaging Computed								
To	mogranhv	Compu	ter-Aided Design Based Systems. 3D modelling software	ares. F	Bio in	iks f	or		
3D	bio-printi	ng - App	lications of 3D Bio-printing and future trends.						
	5D bio-printing - Applications of 5D bio-printing and future trends.								

U	nit:6	Contemporary Issues	2 hours							
Expert lectures, online seminars – webinars										
		Total Lecture hours	62 hours							
Bo	Book (s) for Study									
1	Drug delivery: Fundamentals and applications Hillery A M.,&Park,K.(Eds.).CRC Press,									
	(2016).									
2	Handbook	of Nanomaterials for Cancer Theranostics. Conde, J. (Ed.). (2018)								
Bo	ook (s) for l	Reference								
1	Drug deliv	very: Principles & applications Wang, B., Hu, L, Siahaan, T.J, Jol	hn Wiley& Sons,							
	(2016).									
2	3D Bio-pr	inting -Fundamentals, Principles and Applications, Ibrahim T. Oz	zbolat, Academic							
	Press, (20	16).								
3	3D Bio-	printing in Regenerative Engineering, Principles and A	pplications, Ali							
	Khademho	osseini, Gulden Camci-Unal, 1 st edition, CRC press, (2018).								
Re	elated Onli	ne Con <mark>tents [MOOC, SWAYAM, NPTEL, Websites et</mark> c.]								
1	https://doi	<u>.org/10.1021/acs.chemrev.7b00258</u>								
2	https://doi	.org/10.5772/intechopen.71923								
Cou	rse Design	ed By Dr P. Premasudha e-mail premasu	dha@buc.edu.in							

)				44	-					1	
Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	L	L	M	S	M	S	S	S	
CO2	S	S	М	М	S	S	S	S	S	S	
CO3	S	S	М	S	S	S	S	S	S	S	
CO4	Μ	S	М	М	S	S	S	S	S	S	
CO5	S	S of	S	S	S	S	S	S S	S	S	
			29		Caimhatar	-	C	Y I			
S	Stro	ong	-915	Μ	Mediu	ım	91	L		Low	
	S Strong M Medium L Low										

Page **46** of **82**

Course code 3EA Core		ENVIRONMENTAL SUSTAINABILITY OF	L	Т	Р	Τ				
		NANOMATERIALS	4	0	0	4				
Pre-requis	ite	General concepts of nanomaterials and their functional properties.	Sylla Vers	bus ion	2020 2021	-				
Course Ob	jectives:									
The main objectives of this course are to:										
1. Familia	rize the stu	dents with basics of nanomaterials for environmental sus	tainat	oility.						
2. Enhanc	ing the kno	wledge of the students in nanomaterials for environment	al rem	ediat	tion.					
3. Study o	3. Study on the development of green energy sources using nanomaterials.									
4. Enhanc	ing the kno	wledge on CO_2 capturing.								
Expected (Course Ou	tcomes:								
On the succ	cessful com	pletion of the course, student will be able to:								
1 Desci	ribe benefic	cial effects of sustainable nanotechnology on climate-cha	nge,		К3					
impro	ovement in	our life quality, and promotion of natural resources			110					
2 Desci	ribe princip	les of catalysis (including photocatalysis) and the various	5		К4					
comn	ion applica	tions in environmental treatment								
3 Desci	ribe nanoi	naterials (including carbon nanotubes and nanost	ructur	red						
films/	membrane	s) in membrane based water treatments as well	as no	ew	K4					
nanot	echnology	based water treatment methods								
4 Impro	ove the fun	ctional properties of photocatalysts and photoelectrocatly	sts.		K5					
5 Learn	adva <mark>nced</mark>	energy conversion sources such as water splitting a	nd C	O ₂	K5					
reduc	tion									
K1 - Reme	mber; <mark>K2</mark> -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; J	K6 - (Create	e					
Unit:1	E	nvironmental issues in Water and Remediation		12	hours					
Emerging (Contaminai	nts in Water: Sources and Occurrence- Pharmaceutical l	Residu	ies- I	Natural					
and Synthe	tic Estroge	ns - Drugs of Abuse- Surfactants (Alkylphenol Ethoxy	lates a	and H	Related					
Compound	s)- Perfluc	or <mark>inated Compounds- Industrial Chemicals (Cor</mark> rosio	n Inh	ibito	rs and					
Plasticizers) - Humai	n versus Ecological Health Effects-Industrial Chemica	als–Al	kylp	henols,					
perchlorate	, perfluoro	ochemicals, Phthalates, Polychlorinated Naphthalenes	, Per	sona	l Care					
Products. In	ndustrial co	ontaminants – textile dyes – Methyl orange and methyle	ne bli	ie. M	lethods					
to remove	contamina	nts - Activated Carbon Adsorption- Oxidation Proce	sses-	Ozor	nation-					
Chlorinatio	n – Cl	hlorine Dioxide – Membrane separation –	Ultrafi	Itrati	on –					
Nanofiltrati	on/reverse	Osmosis.								
		~ agulinon 2 mar	-		_					
Unit:2		hotocatalysis for Environmental Remediation	17	<u>12</u>	hours	_				
Introduction	n –Definiti	on – Types of photocatalysis –Photocatalytic reactions	- Key	⁷ Spe	cies in					
Photocataly	tic Reaction	ons - Reactive Oxygen Species - Trapped Electron and F	lole -	Supe	eroxide					
Radical an	d Hydroge	in Peroxide - Hydroxyl Radical (OH^{\bullet}) - Singlet Mol		r Ox	ygen -					
Reaction N	/lechanism	s for Bare $11O_2$ - Reaction Mechanisms of Visible-	Light-	Resp	onsive					
Photocataly	sts - Photo	ocatalytic Reaction Pathways – Effects of Molecular St		e, C	atalyst,					
and wavele	ength - Me	thous for Pathway Determinations - Prototypical Oxida	tive R	leacti	vity in					
rnotocataly	ac Degrad	ations - Alconol Fragmentation and Oxidation				_				
Unit.2	Und	erstanding Photocatalysis and Photocatalyts		17	houre	\neg				
Photocatals	vic - Rate K	inetic models - Substrate-Mediated Recombination Su	rface	14 Sneci	iation	_				
Different Commercial Catalysts (TiO ₂) - Surface Manipulation - Crystal Faces - Surface Trans										
for Holes - Multisite Kinetic Model - Improving the Photocetalytic Efficacy - Thermodynamic										
Aspect of	Photocatal	vsis - Design of Active Photocatalysts - A Convent	ional	Kine	tics in					
Photocataly	sis: First-	Order Kinetics - Langmuir–Hinshelwood Mechanism -	Proble	ems I	Related					

to Particle Size of Photocatalysts - Recombination of a Photoexcited Electron and a Positive Hole - Electron Traps as a Recombination Center - Dependence of Photocatalytic Activities on Physical and Structural Properties - Synergetic Effect–Doping Design of Photocatalytic Reactors - Rotating disk reactor system - continuous-flow reactor system.

Uı	nit:4	Water Splitting for Hydrogen Production	12 hours							
Ge	eneral – '	The water splitting reaction – Natural water splitting – Water o	xidation catalysts –							
Se	micondu	ctors for water splitting - Dye sensitized photocatalysts	- Electrochemical							
me	easureme	nt as screening method for water oxidation - preparation of acti	ve electrodes – wet							
me	method – dry method – Assessment of electrocatalytic activity.									
U	nit:5	Nanotechnology for Carbon Dioxide Capture	12 hours							
Int	Introduction – CO_2 as a resource – Circulate CO_2 economy – CO_2 capture/Separation									
tec	technologies – Direct air capture and nanomaterials – nanomaterials – MOF – Gas separation –									
C	VTs - Na	noporous membranes – Nanocrystals – Nanoparticle ionic mate	rials – CuO loaded							
po	rous carl	oon – selectively permeable membranes – cellulose based poro	us nanomaterials –							
Na	nocompo	osites.								
	• •									
	nit:6	Contemporary Issues	2 hours							
Ex	pert lecti	ires, online seminars – webinars								
D		Total Lecture hours	62 hours							
	$\frac{\mathbf{ok} (\mathbf{s}) \mathbf{fo}}{\mathbf{T}}$	r Study								
1	The Ha	and book of Environmental Chemistry, O. Hutzinger, D. Barcelo,	A. Kostianoy							
	(Editors), Springer-Verlag Berlin Heidelberg, 2008.									
2	2 Photocatalysis and Water Purification - From Fundamentals to Recent Applications, Pierre Dishet (Editor) Wiley VCH Verlag Carbon & Co. A. Descheter 12 (0460 Wiley 1)									
	Cormo	(Editor), whey-vCH veriag Gindh &Co. K Ga A, Boschstr. 12,	69469 weinneim,							
3	Testing	Novel Water Oxidation Catalysts for Solar Fuels Production Ed	By Carminna							
5	Ottone	Simelys Hernández, Marco Armandi, Barbara Bonelii, Springer,	2019.							
4	Nanon	aterials and Direct Air Capture of CO ₂ , Dirk Fransaer, Nanotechr	ology for Energy							
	Sustair	ability, Ed. Marcel Van de Voorde, Wiley VCH, 2017.								
		29								
Bo	ook (s) fo	r Reference								
1	Nanon	naterials for Environmental Protection, Ed. By Boris I. Kharisov, G	Oxana V.							
	Kharis	sova, H. V. Rasikha Dias, John Wiley, 2015.								
2	Nanote	echnologies for Environmental Remediation : Applications and Im	plications, edited							
	by Giu	sy Lofrano, Giovanni Libralato, Jeanette Brown, Springer, 2016.								
3	Hydro	gen Production by Electrolysis, Edited by AgataGodula –Jopek, W	Viley – VCH, 2015.							
4	Environ	mental Applications of Nanomaterials: Synthesis, Sorbents and So	ensors							
	By Gle	en E. Fryxell, Guozhong Cao, Imperial Collge Press, 2007.								
Re	elated Or	lline Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https://	/nptel.ac.in/content/storage2/courses/105108075/module9/Lecture	:40.pdf							
2	https://	/nptel.ac.in/courses/118/107/118107015/								
3	https://	/nptel.ac.in/courses/105/107/105107181/								
4	https://	/onlinecourses.nptel.ac.in/noc20_ce31/preview_								
5	https://	/nptel.ac.in/courses/112/107/112107283/								

6	https://nptel.ac.in/courses/112/107/112107283/

Course Designed ByDr N. Ponpandiane-mailponpandian@buc.edu.in

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	L	Μ	S	S	S	S	S	S
CO2	S	М	L	М	S	S	S	S	S	S
CO3	S	L	М	S	S	S	S	S	S	S
CO4	S	L	М	S	S	М	S	S	S	S
CO5	М	М	L	S	S	М	S	S	S	S
S	Stro	ong		Μ	Medi	um		L		Low

Cou	rse code	3EB	SOCIETAL IMPACTS OF	L	Т	Р	С			
	Electiv	ve	NANOTECHOLOGY	4	0	0	4			
Pre	e-requisite		General concepts of nanomaterials and their functional properties.	Sylla Vers	bus ion	202 20	20 - 21			
Co	urse Obje	ctives:								
The	e main obj	ectives of	f this course are to:							
1.	To impart	the know	vledge about the economic impact of nanotechnology.							
2. Understand the various social impacts of nanotechnology trend and research.										
3.	3. To impart the knowledge about ethics and laws related to nanotechnology									
Ex	pected Co	urse Ou	teomes:							
On	the succes	stul com	pletion of the course, student will be able to:							
1	Analyze	e the eco	nomic impact of nanotechnology			K	.3			
2	Underst	and the e	ethics and laws related to nanotechnology			K	.4			
3	Underst	and the s	ocietal impacts of nanotechnology			K	.4			
4	Analyze	e the lega	l <mark>risks on</mark> nanotechnology.			K	5			
5	Underst	and the p	product scaling up in nanotechnology.			K5	5			
K1	- Remem	oer; <mark>K2 -</mark>	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Create	3				
Un	it:1	G	Protection and Regulation for Nanotechnology		12	hou	rs			
Patentability requirements-riding the patent office pony-infringement issues-nanotech patents										
outside the united states-copyright requirements-nanotech creation as artist works-Delegation of										
pow	er of ag	enci <mark>es-E</mark> z	xamples of regulation of nanotechnology environm	iental	regu	ılatic	ons-			
regu	lation of e	xports-po	plitical and judicial control over agency action.							
					10					
Un	it:2		Liability Legal Aspects of Nanotechnology		12	hou	rs			
nanc	applicati	ons of	civil accliminal laws-civil hability, application	or ne	giige	acti	lo ons			
nano	otechnolog	y, surv v husines	ss organization-criminal liability	my-ch	199	acti	0115			
mun	<i>Jeeennolog</i>	j ousine.								
Un	it:3	E	conomic Impacts and Commercialization of		12	hou	rs			
			Nanotechnology and Social Scenarios							
Intro	oduction -	Socio-Ec	onomic Impact of Nanoscale Science: Initial Results	and	Nan	o ba	nk-			
Man	aging the	Nanoteo	chnology Revolution: Consider the Malcolm Baldrige	Nati	onal	Qua	lity			
Crite	eria -The	Emerg	ing Nano Economy: Key Drivers, Challenges, a	nd O	ppor	tunit	ies-			
Trar	iscending	Moore's	Law with Molecular Electronics and Nanotechno	ology-	Na	vigat	ing			
Nan	otechnolog	gy Throu	gh Society -Nanotechnology, Surveillance, and Societ	y: Me	thod	olog				
Issu	es and Ini	lovations	For Social Research-Nanotechnology: Societal Impli-	cations	s: in	a1V10	iuai			
reis	pectives in	anotecin	lology and Social Hends-Five Nanotech							
Un	it:4		Ethics, Law and Governance		12	hou	rs			
Ethi	cs and Lav	v-Ethical	Issues in Nanoscience and Nanotechnology: Reflection	s and	Sugg	estic	ons-			
Ethi	cs and Nat	no: A Su	rvey-Law in a New Frontier- An Exploration of Patent 1	Matter	s As	socia	ited			
with	Nanotec	hnology	-The Ethics of Ethics -Negotiations over Quality	v of	Life	in	the			
Nan	otechnolog	gy Initiat	ive. Governance-Problems of Governance of Nanoted	chnolo	gy -	Soci	etal			
Implications of Emerging Science and Technologies: A Research Agenda for Science and										
Tech	Technology Studies (STS)- Institutional Impacts of Government Science Initiatives -									
Nan	otechnolog	gy for Na	tional Security.							

U	nit:5		Public Perceptions and Education	12 hours					
Pub	olic Percep	tions-Soc	eietal Implications of Nanoscience: An Agenda fo	r Public Interaction					
Res	Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of								
Nai	notechnolog	gy's Socia	al Impacts -Nanotechnology in the Media: A Prelimit	nary Analysis-Public					
Eng	gagement v	vith Nanc	oscale Science and Engineering -Nanotechnology: M	oving Beyond Risk-					
Coi	nmunicatio	on Stream	ns and Nanotechnology: The (Re)Interpretation of	a New Technology-					
Nai	notechnolog	gy: Socie	etal Implications — Individual Perspectives-Historic	cal Comparisons for					
An	ticipating P	ublic Rea	ctions to Nanotechnology.						
	• • •	1	~						
	nit:6		Contemporary Issues	2 hours					
Ех	pert lectur	es, online	seminars - webinars						
	1 () 0		Total Lecture hours	62 hours					
	ook (s) for	Study		· / 1 T 1 · / TT					
1	I Mihail. C, Roco and William Sims Bainbridge "Nanotechnology: Societal Implications II-								
	Individual Perspectives", Springer, 2007.								
2	Geoffrey Hunt and Michael. D, Mehta "Nanotechnology: Risk, Ethics and Law",								
2	Earthscan/James & James publication, 2006.								
3	Jurgen Sc	Song I td	anotechnology. Global Strategies, industry Trends and	Applications, John					
4	Whey &	Waisman	2005.	any applications and					
4	impost of	nonomoto	and Jean- I ves Bollero Environmental Nanotechnor	bgy applications and					
	inipact of	nanomate	, The McOraw-Thir Companies, 2007.						
P/	ook (c) for	Doforon							
1 1	Jurgen S	chulto	Nanotechnology: Global Strategies, Industry, Trand	and Applications					
1	Jurgen B	v & Sons	I td (2005)	s and Applications,					
2	Mark R	<u>Weisner</u>	and Jean-Yves Bottero — Environmental Nanotecl	hnology applications					
2	andimnac	t of nanor	naterial The McGraw-Hill Companies (2007)	mology upproutions					
	ununnpuo	t of julior		S					
R	elated Onli	ine Conte	ents MOOC, SWAYAM, NPTEL, Websites etc.						
1	https://n	ptel.ac.in/	/courses/103/105/103105122/						
2	https://n	ptel.ac.in/	content/storage2/courses/105108075/module9/Lecture	40.pdf					
3	https://w	ww.azon	ano.com/article.aspx?ArticleID=4992						
			SSULITON 2 WIP						
Co	ourse Desig	gned By	Dr N. Ponpandian e-mail ponpandian@bu	ıc.edu.in					

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	L	М	S	S	S	S	S	S
CO2	S	М	L	М	S	S	S	S	S	S
CO3	S	L	М	S	S	S	S	S	S	S
CO4	S	L	М	S	S	М	S	S	S	S
CO5	М	М	L	S	S	М	S	S	S	S
S	Stro	ong		Μ	Mediu	ım		L		Low

Cou	rse code	37V	SUMMER INTERNSHIP PROJECT	L	Т	P	С					
	Core		SOWWER INTERIORIN TROJECT	0	0	2	2					
Pre	requisite		Basic knowledge and understanding in physics, chemistry and biology in addition to nanoscience and technology	Syllabus Version		2020 -2021						
Course Objectives:												
1. Widening the student's perspective by providing an exposure to real life organizational												
environment and its various functional activities.												
2.	2. This will enable the students to explore an industry/organization, build a relationship with a											
	prospective employer, or simply hone their skills in a familiar field.											
3.	It also pro	vides inv	valuable knowledge and networking experience to the stu	idents								
4.	An addition	onal bene	efit that organizations may derive is the unique opportune	nity to	eval	uate	the					
	student fr	om a loi	ng-term perspective. Thus this internship can become a	a gate	way	for f	inal					
	placement	/ higher	education of the student.									
5.	The stude	nt shoul	d ensure that the data and other information used in	the st	udy 1	repor	t is					
	obtained v	with the	permission of the institution concerned. The students s	should	also	beh	ave					
	ethically a	ind hone	stly with the organization.									
-	<u> </u>	0 (
Expected Course Outcomes:												
On the successful completion of the course, student will be able to:												
1	1 Practical experience in an organizational setting. K4											
2	2 Excellent opportunity to see how the theoretical aspects learned in classes are K2											
	integrate	d into t	ne practical world. On-floor experience provides mu	ich m	ore							
	professio	nal expe	rience which is often worth more than classroom teachin	<u>g.</u>								
3	Opportur	iity to lea	arn new skills and supplement knowledge.	-		K	.3					
4	Opportur	ity to pr	actice communication and teamwork skills.	¥ /								
5	Opportur	ity to l	earn strategies like time management, multi-tasking o	etc in	an							
	Research	/industri	al setup									
K1	– Rememb	er; K2 –1	Jndestand; K3 – A <mark>pply; K4– Ana</mark> lyze; K5 – Evaluate; K6	6– Cre	ate							
			Not and the second second									
Th	e total ma	rks for t	he Summer Internship Project will be 50 and it carri	ies 2 c	redi	ts. T	he					
ma	rks will b	e award	ed for the following aspects:									
1	Introdu	ction:	Clear understanding of the topic/subject; unders	tandi	ng d	of t	he					
1	organisa	tion/unit/	/field as well as review of similar studies									
2	Details a	about th	e study: Objectives, formulation of the problem, scope	, and	ratio	nale	of					
	the study	′ .										
3	Methods	s/method	lology adopted for the study: Analytical, Survey, Fi	eld W	/ork	or a	ny					
	other me	thod with	n appropriate justification and reasoning.	.1								
4	Analysis	and col	nciusions: The logic of analysis, source of data, whether	er the	conc	IUS10	ns					
	Contribu	e with th	e objectives, etc. d loorning from the project. Details of the contribution	ofth	o atra	du 4	ha					
5	benefite	to the or	a rearing from the project: Details of the collindution	\sim	e siu	uy,, l	ПС					
	Acknow	ledgeme	nts • References/Citations and Ribliography and help	if an	v re	ceiv	ed					
6	from oth	er indivi	tuals/organisations	ii all	y,, it		cu					
	Presents	tion of	the report, format of the report, flow of the report.	stvle	. lan	guag	ze.					
7	etc.			,,	,	0¥	,-,					

	Presentation of the report to the examiners: Substance and treatment of the topic, style								
8	of presentation, performance in the question answer session, time management, language,								
	etc.								
9	Overall impression.								
10	It also includes th	e report on the study tour d	uring I and I	II Semesters.					
Course Designed By Dr N. Ponpandian e-mail ponpandian@buc.edu.in									

Mappin	g with Pr	ogramme	Outcome	es						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	L	S	S	S	L	S	S
CO2	S	S	L	L	S	S	М	М	М	S
CO3	S	S	M	M	S	S	M	L	S	S
CO4	S	S	L	М	S	S	L	М	М	S
CO5	S	S	L	L	S	S	М	М	М	S
			5		1 AN		24			
S	Stro	ong	2	. M	Mediu	ım 🌀 👔	18	L	,	Low

Cour	rse code	33P	PRACTICAL – III –	APPLICA	FIONS OF	L	Т	P	С
	Core	1	NANOMA	TERIALS		0	0	4	4
D	• • • • • •		Basic knowledge and unde	rstanding in	n nanoscience,	Sylla	bus	202	20
Pre-	requisite		physics, chemistry and bio	logy.		Vers	ion	-202	21
Cour	rse Objec	tives:							
То	impart tra	ining in	operating different instrumer	its used in t	he analysis of va	rious,	phys	ical,	
che	emical, and	d biologi	cal constituents and study the	e applicatio	ns of nanomateri	als.			
Expe	ected Cou	rse Outo	comes:						
On	the succes	sful com	pletion of the course, studen	t will be abl	le to:				
1	Understa	nd the de	esign aspects of application s	<mark>pe</mark> cific Nan	oscale Devices.			K	4
2	Learn ma	aterial's p	properties used for the fabrication	ation of nan	osensors.			K	2
3	Understa	nd the fu	nctionalization and application	ons of nano	materials.			K	3
4	Acquire	the know	ledge of electrochemical ene	rgy stor <mark>age</mark>	systems and bio	medic	al	K	5
	applications								
5	Having an ability to use techniques, skills and modern tools necessary for practical					cal	K	6	
	applications								
K1-	- Rememt	ber; <mark>K2–</mark>	Understand; K3– Apply; K4-	- Analyz <mark>e</mark> ; l	K5– Evaluate; K	6 – Cr	eate		
Pra	ctical		and the second	-					
1	Electi	roch <mark>emi</mark> c	al properties of nanoparticles	s using cycl	ic-voltammetry				
2	Electi	roch <mark>emic</mark>	al sensors for the detection o	f pollutants	in water				
3	Gold	nano <mark>part</mark>	icle based SERS sensing cha	racteristics	of toxic compou	nd			
4	Evalu	lating gas	s sensing parameters for a give	en nanoser	nsor	~			
5	Deter	mination	of charge storage efficiency	, energy der	n <mark>sity of a g</mark> iven n	anom	ateria	ıls	
	based	superca	pacitor	1		Ž /			
6	Evalu	ation of	photocatalytic degradation	efficiency	y of a give na	nomat	erial	aga	inst
	organ	1c dye de	egradation.	NU	6		.1	1	
/	Evalu	ation of	the surface energy of a given	nanomater	tal using contact	angle	meth	lod	
8	Analy	/zing the	figures of merit of a field eff	ect transist	or based gas sens	sor			
9	Deter	mine the	f Lambert Deer's law and	es of a give	n electro catalysi	l tion	-f	lenor	
10	soluti	on by II	V-Vis spectrophotometer	determinati	ion of concentra	uion (Ji un	KHOV	vп
11	Fabrie	cation of	scaffolds	LEVELE					
12	3-D p	rinting o	f scaffolds						
13	Cell i	solation	and seeding						
14	Electi	ro chemi	cal corrosion experiment						
15	Anim	al Cell C	ulture Techniques – Primary	Cell Cultur	re, Sub Culturing	5			
			<u>1</u>		· · · · · · · · · · · · · · · · · · ·				
Cour	se Design	ed By	Dr N. Ponpandian	e-mail	ponpandian@	bu			

Mappin	g with Pro	gramme	Outcome	es						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	М	S	S	S	S	S	S
CO4	S	S	М	L	S	S	S	S	S	S
CO5	S	S	L	М	S	S	S	S	S	S
S	Stro	ng		Μ	Medi	um		L		Low

Course code	43A	IPR and Biosafety	L	Т	Р	С
Core			2	0	0	2
Pre-requisite		Basic knowledge in intellectual property rights and laboratory safety.	Sylla Vers	bus ion	202 20	20 - 21
Course Object	ives:					
The main obje 1. To under different	ectives of rstand the levels.	this course are to: e basic concepts of IPR and Biosafety concepts and	its a	pplica	tion	in
2. To acquir report for 3. To know	mation. about IPI	R policy, Indian and International Laws on patent.	es, an	arysis	and	1 115
4. To acquit	re knowle	dge on Biosafety and its significance in different areas of	f scier	ice.		
Expected Cou	rse Outco					
1 The stu	dents wil	l get an overall understanding of basic history and classif	ficatio	n	K	(2
2 Learnir analysi	ng the te <mark>c</mark>	hniques to obtain database search in different portals and	its		K	(4
3 To get filling	equipped	with the theoretical and practical understanding of paten plication and related structure and frames.	t writi	ng,	K	\$5
4 To kno	w the nat	ional and international laws of IPR.			K	52
5 To lear	n ab <mark>out C</mark>	MO, biosafety cabinets, principles and its guidelines.		NC	K	52
K1 - Remem	ber; <mark>K2</mark> -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	K6 - C	reate		
Unit:1	Ţ	Types of IP		6	hou	irs
Patents – Tra - Geographi protection of Databases - formation.	demarks cal indic IP - Inve Country-	- Copyright & Related Rights - Industrial Design - Trad- ations - Protection of new GMOs; International fra- ention in context of "prior art" - Patent databases - Searc wise patent searches (USPTO, EPO, India etc.) - An	itional amewo hing I alysis	knov ork fo nterna and	vled or t atior repo	ge he 1al ort
Unit:2		Types of Patents		6	hou	rs
Indian patent	t act 197	0 - Recent amendments - Patent application- forms an	d guid	leline	s -F	lee
structure -Ti	ime fram	es - Filing of a patent application - Precautions	before	nate	entin	ισ-
disclosure/nc	n-disclos	ure - Patent application- Forms and guidelines -Fee	struc	ture	-Tir	ne
frames - Tv	pes of p	atent applications -Provisional and complete specifica	tions	- PC	Τa	nd
convention p	atent app	lications - International patenting – Requirement -Proce	edures	and	cost	s -
Financial ass	istance fo	or patenting-introduction to existing schemes.				
Unit:3		IPR Policies		6	hou	rs
IPR policy of	f Governi	nent of India - Indian &international patent laws - India	n pate	nt act	197	<i>'</i> 0;
recent amend	dments -	Financial assistance for patenting-existing schemes-	Role o	f pate	ents	in
biotechnolog	y - The	patentability of microorganisms - IPR and WTO rea	gime	- con	sum	ier
protection ar studies.	nd plant g	genetic resources-GATT and TRIPS - Patenting gene	- Issu	es an	d ca	ise
I Incide d		D! f - f -		-	1.	
Unit:4	akarour	BIOSAIELY	1 00004	0 oinm:	nou	irs For
biohazards -	Biosafet	y levels- Biosafety levels of specific microorganisms	- Re	comm	iend	ed

bi	biosafety levels for infectious agents and infected animals - Biosafety guidelines - Government							
of	India.		C		• •			
U	nit:5		Rules in Bio	osafety		6 hours		
D	efinition of	f GMOs &	LMOs - Roles of inst	itutional bio	osafety committee	- RCGM, GEAC -		
G	MO applic	ations in f	food and agriculture - E	Invironment	tal release of GM	Os - Risk analysis -		
Ri	sk assessm	nent - Risk	management and comm	nunication -	Overview of national	onal regulations and		
re	levant inter	rnational a	greements including Ca	rtagena prot	tocol.			
U	nit:6		Contemporar	y Issues		2 hours		
Ex	Expert lectures, online seminars - webinars							
				Total	Lecture hours	32 hours		
Be	ook (s) for	Study	A Constant	EIn -				
1	Intellectu	al Propert	y La <mark>w, P. N</mark> aray <mark>anan, 3</mark> r	^d Edition, E	a <mark>stern Law</mark> House,	, 2018.		
2	Intellectu	al Propert	y <mark>Law, Meenu Paul, Re</mark> p	orint, Alla <mark>ha</mark>	abad Law Agency,	2018.		
3	Biotechno	ology, Jo <mark>h</mark>	n E. Smith, 5 th Edition, C	Cambridge U	J <mark>niver</mark> sity Press, 2	012.		
Be	ook (s) for	Reference	ce i i i i i i i i i i i i i i i i i i i		2 2 2			
1	Intellectu	al Propert	y Law containing Acts a	nd Rules, U	Universal Law Publ	lication Company.		
2	Intellectu	al P <mark>ropert</mark>	y <mark>Ri</mark> ghts, Neeraj Pandey	, Khusdeep	Dharni, PHI Learn	ning (P) Ltd., 2014.		
3	Laborator	ry b <mark>iosafe</mark> t	y manual Third edition,	World Hea	lth <mark>Organization, 2</mark>	<mark>20</mark> 04.		
4	Biologica	l Safety: H	Principles and Practices,	5th Edition	, Volume 25, Num	ber 1, Dawn P.		
	Wooley;	Karen B. l	Byers, ASM Press, Wasl	nington, DC	C, USA, 2017.			
			Providen.	3.	···· ··· ···			
Re	elated Onlin	ne Conten	ts [MOOC, SWAYAM,	NPTEL, W	ebsites etc.]			
1	https://n	ptel.ac.in/	courses/109/106/109106	5137/	IBS			
2	https://n	ptel.ac.in/	noc/courses/noc18/SEM	2/noc18-hs	<u>45/</u>	9		
3	3 <u>https://nptel.ac.in/courses/109/106/109106148/</u>							
4	4 <u>https://nptel.ac.in/courses/127/105/127105008/</u>							
5	5 <u>https://onlinecourses.nptel.ac.in/noc20_hs18/preview</u>							
			Coin	ibatore	Cor			
Co	urse Desigr	ned By	Dr N. Ponpandian	e-mail	ponpandian@bu	uc.edu.in		

இந்தப்பாரை உயர்த்

Mappin	g with Pro	gramme	Outcome	es COUCATE	TO ELE					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	L	S	Μ	М	S	S	S
CO2	S	М	М	Μ	М	L	L	S	S	S
CO3	S	S	М	L	S	S	М	S	S	М
CO4	S	S	М	L	М	М	S	S	S	S
CO5	S	S	М	Μ	S	S	S	S	S	S
S	Stro	ng		Μ	Medi	um		L		Low

Cou	rse code	47V	PROJECT AND VIVA VOCE	L	Т	Р	C
	Core			0	0	8	8
Pre-	requisite		Basic knowledge and understanding in physics, chemistry and biology in addition to nanoscience and technology	Sylla Vers	bus ion	202 -202	20 21
Cou	rse Objec	tives:					
1.	To offer s	tudents a	n opportunity to demonstrate their competence in laborat	ory w	ork.		
2.	To provid	le a vehi	cle for integrating the knowledge gained in various sub	jects (of the	e deg	gree
_	course.						
3.	To allow	the exer	cise of the undergraduates' personal qualities - viz. matu	irity, i	initia	tive	and
	creative al	bility.		1.			1
4.	To apply	commun	ication skills, both oral and written, to communicate res	sults,	conce	epts	and
5	ideas.		of a non-nontina nature				
5.	To solve problems of a non-routine nature.						
Evn	oted Cou	rao Out					
Expe On	the succes	rse Out	plation of the course, student will be able to:				
	A bility to	nlan an	d implement an investigative or developmental project gi	von		K	71
1	general o	biective	and guidelines	ven		N	.4
2	In_denth	skill to u	se some laboratory (workshop equipment to process and			K	2
2	character	ize mate	rials			n	~
3	Ability to	analyze	data to produce useful information and to draw conclusi	ons h	7	K	3
5	systemati	ic deduct	ion		y	I	
4	Ability to	work a	nd study independently				
5	Apply the	e knowle	dge to design new research problems			1	
K1-	- Rememb	ber; $K2-1$	Jnderstand; K3– Apply; K4– Analyze; K5– Evaluate; K	6– Cr	eate		
			100 million and 10		$\Lambda /$		
		5	About the Project	7			
	The pu	irpose of	f final year projects is to provide students an opportu	nity t	o app	oly t	he
1	knowle	edge they	have learnt, their intellectual abilities and practical skil	ls to s	olvir	ng re	al,
1	or clos	se to rea	l life engineering problems. These problems may take	e the	form	of	an
	investi	gation or	the development of devices or both.				
	Throug	ghout the	project, students are expected, with guidance from their	superv	visors	s, to	do
	things	and obt	ain information for themselves. Literature review, wh	ich p	rovic	les t	he
	student	ts a broa	der perspective of the work they are engaged in, is an es	sentia	I part	of t	he
	project	. The p	both you hally and in writing. The you hal skill is do	unen		nty	l0 ah
	constar	inicale,	both verbany and in writing. The verbal skill is do	oral		ntoti	gn
2	toward	s the en	d of the projects. The writing skill is developed through	olai j b rer	ort v	uritir	on ng
	These	reports	form the major part of the final assessment. Through	sii iep thout	the the	nroie	ig. ect
	evercis	e studer	its are trained when necessary how to use instruments	,nout data :	malv	sis a	nd
	interpr	etation e	ffectively in order for a successful completion of the r	roject	The	ev al	so
	have to	b learn to	how to optimize the outcomes under various constraints.	Stude	ent pi	ogre	ess
	is conti	inuouslv	monitored throughout the project duration.		- P	0	
	Assess	ment Gu	ideline of Project (75):				
	a. Air	n and Ol	pjectives of the Research (10)				
3	b. Me	thodolog	y (15)				
	c. Exe	ecution of	f the Research (20)				
	d. Dat	ta Analva	sis (15)				

	e. Writing (10)							
	f. Conclusion	(5)						
	Assessment Gui	deline of Power Point Pres	entation (25)):				
4	i) Body langu	age (5 marks)						
4	ii) Communica	ation Skills (5 marks)						
	iii) Content of t	he power point presentation	on (15 marks)	•				
Cours	se Designed By	Dr N. Ponpandian	e-mail	ponpandian@buc.edu.in				

Mappin	g with Pro	gramme	Outcome	es 👘						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	S	S	S	S	S
CO2	S	S	L	L	S	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	L	S	S	S	S	S	S	S
CO5	S	S	M	- L /	S	S	S	S	S	S
						Sec.	E.			
S	Stro	ng		M	Medi	um	1 F	L		Low

Course code	1GS	INTRODUCTION TO NANOSCIENCE AND	L	Т	P	С
Support	ive	TECHNOLOGY	2	0	0	2
		Studied Physics/Chemistry/Biology/Any Allied	Sylla	bus	202	20
Pre-requisite		subject during graduate Programme.	Vers	ion	-202	21
Course Object	tives:					
1. To unders	tand the	basic concepts of the atomic structure				
2. To be able	e to get f	amiliarized with the basic of chemical bonding				
3. To lay for	indation	of nanoscience and technology				
4. To enhance	e the kn	owledge about nano materials synthesis				
5. To familie	es with th	e basic characterizations of nanomaterials				
Expected Cou	rse Out	come <mark>s:</mark>				
On the succes	sful com	pletion of the course, student will be able to:				
1 Rememb	er the b <mark>a</mark>	sic structure of the atoms and molecules			K	.1
2 Understa	nd the cl	nemical bond formation			K	2
3 Apply ba	sic chem	istry to prepare new nanomaterials			K	3
4 Analyze	the nan <mark>o</mark>	materials using different characterization techniques for			K	4
conforma	atio <mark>n</mark>					
K1– Rememb	er; <mark>K2</mark> –	U <mark>nde</mark> rstand; K3– Apply; K4 – Analyze; <mark>K5</mark> – Evaluate; K	. <u>6– Cr</u>	eate		
Unit:1		Basics of Atomic Structures		6	hou	Irs
Atoms, Mole	cule <mark>s, I</mark>	ons, Electrons & Periodic trends: Atomic models, P	eriodia	e tab	le a	nd
electronic stru	actures,	Sizes of atoms & ions, Ionization Energy, Electron aff	inity a	ind e	lectr	on
negativity, Tr	ends in c	hemistry of groups.		~		
	E		9			
Unit:2	2	Chemical Bonding	61	<u>6</u>	hou	rs
Molecular str	ucture a	a Bonding Theories: Atomic Bonding in solids, Types	of bon	Id: M		1C,
theory for sin	and and v	render-waals bond; Hybridization; Hydrogen bonding,	worec	cular	Ordi	lai
	ipie mor	ecules such as diatomic molecules etc.,				
Unit.3		Basic Concents of Nanoscience		6	hou	re
Nanoscience-	Nano	technology- Nanomaterials definitions - Classification	tion	of	carh	01
nanostructure		ropes dimensions (one two three and zero dimension	on) co	onfin	eme	nt-
Surface to y	volume	ratio-Energy at bulk and nano scale- Nature Nano	nheno ⁻	mena	- Si	ze
dependent va	riation ir	Physical- Chemical- Catalytic properties.	Pilonoi			20
Unit:4		Synthesis of Nanomaterials		6	hou	rs
Chemical pro	ecipitatio	on and co-precipitation, Sol-gel synthesis, Microemu	lsions	or	reven	se
microemulsic	ons, Solv	othermal synthesis, Thermolysis routes, Metal nanocrys	stals by	y red	uctio	on,
Microwave	heating	synthesis, Photochemical synthesis, Electrochemical	mical	syr	nthes	is,
Sonochemica	l synthes	is.				
						
Unit:5		Characterization of Nanomaterials	<u> </u>	6	hou	irs
Optical Spe	ectroscop	by- UV-Vis Absorption Spectroscopy, Photolun	annesco	ence	(P	L)
Spectroscopy	, Fourier	Transform Infrared Spectroscopy (FT-IR), Raman Spec	trosco	ру.		

Unit	:6	Contemporary Issues	2 hours
Expe	ert lecture	s, online seminars – webinars	·
		Total Lecture hours	32 hours
Bool	k (s) for S	Study	
1	Organic	Chemistry, T. W. Graham Solomons, Craig B. Fryhle, Scott A. S	Snyder, 12^{th}
-	Edition,	John Wiley & Sons, New York, (2017).	~ 1
2	Nanosca John Wi	ale Science and Technology, Robert W. Kelsall, Ian W. Hamley, Mark iley & Sons Ltd, (2005).	: Geoghegan,
3	NANO:	The Essentials- Understanding Nanoscience and Nanotechnology,	T. Pradeep,
	McGrav	v Hill Education (India) Private Limited, (2018).	
4	Schodel Elsevier	x, Nanomaterials, Nanotechnologies and Design M.F. Ashby, P.J. F y, (2009).	erreira, D.L,
5	Element	tary Organic Spectroscopy, Y.R. Sharma, S. Chand Publishing, (2007)).
	•		
Bool	k (s) for l	Reference	
1	March's	Advanced Organic Chemistry: Reactions, Mechanisms, and Structure	re, Michael B.
	Smith, 8	s th Edition, Wiley, (2019).	
2	Nanopa	rticle Technology Handbook, Masuo Hosokawa, Kiyoshi Nogi, M	Aakio Naito,
	Toyoka	zu Yokoyama, Elsevier Publications, (2007).	
3	Encyclo	pedia of Materials Characterization, Series Editors: Butxetworch-He	einemann, C.
	Richard	Brundle and Charles A. Evans. Jr, a division of Reed Publishing	CUSA) Inc,
	(1992).		
4	Introduc	ction to Nanoscience and Nanotechnology, K K Chattopadhyay, Arg	hya Narayan,
	Banerje	e, PHI Learning, (2009).	
Rela	ted Onlin	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://s	wayam.gov.in/nd1_noc19_mm21/preview	
2	https://s	wayam.gov.in/nd1_noc19_mm22/preview	
a			
Cours	se Design	ed By DrP. Sakthivel e-mail <u>sakthivel.p(</u>	<u>@buc.edu.in</u>
		Coimbatore Co SUST SUSTICITION 2 UIT SALL EDUCATE TO ELEVATE	

Course code 2GS		L	Т	P C					
Supportive	Applications of Nanotechnology	2	0	0 2					
Pre-requisite	Should have studied Physics/Chemistry/Biology/Fundamentals of Nanoscience/Any Allied Subject During Graduate Programme.	Sylla Vers	bus ion	2020 -2021					
Course Objectives:									
1. To learn nanotech	nology applications.								
2. Encourage the Stu	dents to carryout research in nanotechnology.								
Expected Course Out	comes:								
Un the successful con	applications of nonometerials in different fields			V 1					
2 Apply the natur	al dva materials for DSSCs			KI K3					
3 Understand the	different types of energy devices			K3 K2					
4 Fabricate nanon	aterials for wastewater purification			K4					
5 Design a Nanod	evice for Biological Applications			K5					
K1 - Remember: K2	- Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate: I	K6 – C	Create	2					
Unit:1	Nanomaterials for Solar Cells		6	hours					
Principles of photov	oltaic (PV) energy conversion. Types of photovoltaic	cells.	Phy	sics of					
Unit:2 Introduction of energy Batteries), Supercapa	Nanomaterials for Energy Storage ergy storage devices, Issues and challenges of nargy storage systems, Primary and secondary batteric citor, Current status and future trends.	anoma es (L	6 ateria	hours hours ls for m ion					
	Coimbatare Co	-							
Unit:3	Nanomaterials for Agricultural Applications		6	hours					
Nanotechnology in Nanourea and mixed	fertilizers, Nanofertigation - Nanopesticides, Nanoseed.	Nan	ofert	ilizers:					
Unit:4	Nanomaterials for Environmental Applications		6 h	ours					
Environmental pollut nanotechnology in t Drinking water and A	ants in the air, water, soil, hazardous and toxic wastes the remediation of Pollution in industrial and waste ir/Gas purifications.	- App water	olicati trea	ions of tment-					
Unit:5	Nanomaterials for Biological Applications		6	hours					
Development of nanomedicines- Nanotechnology in the diagnostic application. Preformulation Studies: on various dosage forms such as tablets, capsules- suspension-creams- emulsion- injectables- ophthalmic and aerosols, etc. Gold nanorods: Multifunctional agents for cancer imaging and therapy- Fluorescent silica nanoparticles for tumor imaging									
Unit:6	Contemporary Issues		1	hours					
Expert lectures, online	e seminars– webinars								

	Total Lecture hours 31 hours				
Book (s) for Study					
1	Handbook of Batteries, D. Linden Ed., 2 nd Edition, McGraw-Hill, New York, (1995).				
2	Introduction to Nanotechnology, Charles P. Poole, Jr. Frank J. Owens, A John V	Wiley 81Sons,			
	Inc., Publication, (2003).				
3	Nanotechnology: Applications in Energy, Shafiquzzaman Siddiquee, Gan Jet Hong Melvin,				
	and Md. Mizanur Rahman, Drug and Food, Springer, Cham, (2019).				
4	C. Kumar, Nanomaterials for Medical Diagnosis and Therapy, Wiley –VCH, USA, (2007).				
5	Wiesner M R and Bottero JY, Environmental Nanotechnology: Applications and Impacts of				
	Nanomaterials, McGraw-Hill New York,(2007).				
Bo	pok (s) for Reference				
1	Polymer Matrix Composites and Technology, Ru-Min Wang Shui-Rong	Zheng Yujun			
	Zheng, 1 st Edition, Woodhead Publishing, (2011).				
2	Nanoparticles Deliver RNAi Therapy, Materials Today, Martin C. Woodle	e, Patrick Y.			
	Lu,(2005).				
3	Nanotechnology 101, John Mongillo, Greenwood Press, (2007).				
	50 6 50 6				
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]				
1	https://nptel.ac.in/courses/113/106/113106093/				
2	https://nptel.ac.in/courses/102/107/102107058/				
3	https://nptel.ac.in/courses/102/104/102104069/	× 4			
4	https://nptel.ac.in/courses/112/107/112107283/				
Cou	urse Designed By Dr P. Sakthivel e-mail <u>sakthivel.p@t</u>	ouc.edu.in			
	1 1 0 1 . 5 . 00 A . 1 . 1				

ANTIMICROBIAL TESTING			
Name of the Department		Nanoscience and Technology	
Name of the Faculty Member i/c With Complete Address with Phone and e-mail		Dr P. Premasudha Assistant Professor Department of Nanoscience and Technology Bharathiar University Coimbatore 641 046 Mobile: 9843620645 Email : premasudha@buc.edu.in	
Inter / Intra Depa	ertment Course	Intra Department	
Duration of the C	ourse	30 hours	
Eligibility	(ma)	Microbiology / Biotechnology / Biochemistry /Botany / Zoology / Nanoscience	
Number of Candi	date <mark>s to be Admitted</mark>	20	
Registration Proc	ed <mark>ure</mark>		
Job Opportunitie	s:		
Pursue a career as	a Microbiology Laborate	bry Technician for culture testing	
Learn to suggest ap	opropriate antibiotics		
The objectives of	the Course are:		
The main objective	es of this course are to:		
1 To understan	d the principles of antimi	icrobial testing	
2 10 utilize spe	2 To utilize specific monitoring techniques to evaluate the susceptibility of a microbe to		
3 To distinguis	different antibiotics 2 To distinguish the range of activity of an antibiotic		
4 To recognize	and define advantages a	nd limitations of two different suscept	tibility testing
procedures	and define ad fundages a		lionity tosting
5 Explain the s	ignificance of the minim	al inhibitory concentration and the mi	nimal
bactericidal c	concentration relative to t	he effectiveness of an antimicrobial d	rug.
Course Content	Lecture / Practical	/ Project / Internship	
	NIS SNI O		
Module 1 Int	roduction and Occurrenc	e of Microorganisms	3 - hours
(B Modulo 2 De	acteria and Fungi)	Alicroorganisms	2 hours
Module 2 Pic	scovery of Antibiotics D	evelopment	3- hours
Module 3 Di	evelopment of Antibiotic	Resistant Microbes	3- hours
Module 5 Eactors Governing in the		evelopment of Antibiotic	3- hours
Resistant Microbes			5 nours
Module 6Introduction of Antimicrobic		ial Testing	3- hours
Module 7 Antimicrobial Testing Protection		ocols - Bacteria	3- hours
Module 8Antimicrobial Testing Prote		ocols - Fungi	3- hours
Module 9 Nanomaterials in Antimicro		bial Activity	<u>3- h</u> ours
Module 10 Fu	ture Perspectives and Co	nclusion	3- hours
Book(s) for Study			
1 Geeta Sumbali	Geeta Sumbali and Mehrotra RS (2009). Principles of Microbiology. First edition,		
2 Dubey RC and Maheswari DK (2012). A Text of Microbiology. Revised edition, S.			

	Chand and Company Ltd., New Delhi			
3	Ananthanarayan & Paniker's. (2013). Text Book of Microbiology, 9th Edition,			
	Universities Press.			
Bo	Book (s) for Reference			
1	Prescott L M, J P Harley and D A Klein (2005). Microbiology. Sixth edition,			
	International edition, McGraw Hill.			
2	Pelczar TR M J Chan ECS and Kreig N R (2006). Microbiology. Fifth edition, Tata			
	McGraw-Hill INC. New York.			
Re	Related Online Contents			
1	Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and emerging methods of antibiotic			
	susceptibility testing. Diagnostics, 9(2), 49.			
	https://dx.doi.org/10.3390%2Fdiagnostics9020049			
2	Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial			
	susceptibility testing: a review of general principles and contemporary practices. Clinical			
	infectious diseases, 49(11), 1749-1755.			
	https://doi.org/10.1086/647952			

ORGANIC SOLAR CELLS: MATERIALS DESIGN AND DEVICE			
Name of th	e Department N	CTERIZATION Nanoscience and Technology	
Name of th With Comj and e-mail	e Faculty Member i/c plete Address with Phone B	r. P. Sakthivel rofessor epartment of Nanoscience and Technology harathiar University, 0422-428428, 9677560890	
Inter / Intr	a Department Course In	ter Department Course	
Duration o	f the Course 40) hours	
Eligibility		Chemistry, physics, Electronics, Nanoscience and Technology	
Number of	Candidates to be Admitted 20		
Registratio	n Procedure		
Job Oppor	tunities: Solar cell Companies		
The object	ives of the Course are:		
The main o	bjectives of this course are to:		
1 Differe	ntiate between small molecules and p	polymers	
2 Design	conjugated small molecules and made	cromolecules	
3 Tune th	e HOMO, LUMO and band gap ene	rev levels by theoretically	
4 Identifi	cation of suitable donor and acceptor	rs for BHL device fabrications	
5 Solar or	pargy hervesting devices febrication		
5 301ai ei	lergy harvesting devices radiication	01, f = 1	
Course Co	tent Lecture		
Module 1	utilization	ternative energy sources and 3 hours	
Module 2	Principles of energy conversion laws, the Carnot cycle	: thermodynamic first and second 3 hours	
Module 3	Solar energy: Solar intensity and potential and current level of ut	d spectrum, global solar energy 3 hours ilization	
Module 4	Review on Renewable and Non	renewable energy resources 3 hours	
Module 5	Discussion of different types of	Organic Solar cells materials and 4 hours	
	state-of-the-art		
Module 6	Working principles of BHJ Dev	rices with D-A Type DONOR and 4 hours	
	Fullerene ACCEPTORS		
Module 7	Designing DSSCs and conjugat	ed Small/polymer solar cell 5 hours	
N 110	materials and energy levels		
Module 8	Fullerene Acceptors Synthesis a	In a Structural Studies 5 hours	
Module 9	Overview of perovskile solar ce	and state-of-the-art 5 hours	
Module IU Organic solar cells device fa		cation techniques and Applications 5 hours	
BOOK(S) IOF Study			
BOOK(S) IOI		v. EADERINEIR, AND DEVICE SIMULATION, SUMPLET,	
1 Wolfgar	014	, ,	
Book(s) for1WolfgarCham, 22SHege	1014. dus and A Luque "Handbook of Ph	otovoltaics" 2 nd Ed. 2005	
Book(s) for1WolfgarCham, 22S. Hege3Martin	014. dus and A. Luque, "Handbook of Ph Green "Solar Cells: Operating Price	otovoltaics", 2 nd Ed. 2005.	

Bo	ook (s) for Reference		
1	Christoph Brabec, Ullrich Scherf, Vladimir Dyakonov, Organic Photovoltaics, Wiley- VCH,		
	2014		
2	Modest Voronov, Organic Solar Cells: Advances in Research and Applications, NOVA		
	Science Publisher, 2017.		
Re	Related Online Contents		
1	Prof. Soumitra Satpathi, Dept of Physics, IIT Roorkee, Solar Photovoltaics Fundamentals,		
	Technology And Applications, https://nptel.ac.in/courses/115/107/115107116/		
2	G. Chidichimo and L. Filippelli, Organic Solar Cells: Problems and Perspectives, Review		
	Article Open Access, 2010 International Journal of Photoenergy, Article ID 123534 11		
	pages		

PRACTICAL METHODS IN NANOTOXICOLOGY AND MOLECULAR GENETICS						
Name of the Department			Nanoscience and Technology			
Name of the Faculty Member i/c With Complete Address with Phone and e-mail			Dr. P. P. Vijaya Professor Department of Nanoscience and Technology Bharathiar University Coimbatore – 641 046 Phone: +91 9840868328 E-mail: vijayaparthasarathy@buc.edu.in			
Inter /]	Intra l	Department Course	Inter and Intra Department Course			
Duratio	on of t	he Course	40 hours			
Eligibil	lity		B.Sc.,			
Numbe	er of C	andidates to be Admitted	25-50			
Kegistr	ation	pition CSID Control Lootha	Unline	Control		
Drug Re	esearcl	n Institute (CDRI) Laboratorie	es.	Central		
		E / / - M				
The ob	jective	es o <mark>f the Cour</mark> se are:				
The ma	in obje	ectives of this course are to:				
$1 \qquad T_{ex}$	o recar sperim	bitulate the previous knowledge	ge of Molecular Biology and biochemistry	to design		
2 U	nderst	and the DNA isolation and am	plification techniques			
3 T	o use t	he techniques and skills neces	sary for isolation of DNA and their furthe	er analysis.		
4 G	Gain basic knowledge about recombinant DNA Technology					
5 D	5 Distinguish the basic techniques in genetic engineering					
Course Content Lecture / Practical / Project / Internship						
		4 17 Jun		Į.		
Module 1 DNA Isolation - Isolation plant cell.		DNA Isolation - Isolation plant cell.	of genomic DNA from bacteria and	3 hours		
Module	e 2	Isolation of plasmid DNA adopting different methods.	from different type of bacteria by	3 hours		
Module 3 Purification and calculation , plasmid curing (acridine		Purification and calculation , plasmid curing (acridine o	of molecular weight of plasmid DNA. range, heat shock).	3 hours		
Module 4		DNA and Protein Analy Hybridization.	vsis: DNA: Southern and Northern	3 hours		
Module 5		DNA Sequence Analysis Sequencing, RFLP and RA	(e.g Sangers Method), Automated PD.	3 hours		
Module 6 Protein: Weste		Protein: Western Blotting, I	ELISA and its variations	3 hours		
Module 7		Human chromosomal aberra lymphocyte cells); normal a	ations- Plant (Allium cepa and Human and abnormal karyotypes.	3 hours		
Module 8		Preparation of E coli com using plasmid offering antil	petent cells and their transformation piotic resistance to the host cells	3 hours		
Module 9		Restriction mapping of gene	omic/plasmid DNA (E.coli)	3 hours		
Module 10		Competent cell preparation. E.coli and yeast.	Preparation of competent cells in	3 hours		
		~				
ok(s) for Study						
---	--	--	--	--	--	--
Molecular Biology of the Cell: Alberts et al., 6 th Edition, Garland Publications, 2015.						
Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology",						
4th Edition, Greene Publishing Associates, NY, 2008						
Strachan T and Read A P, Human molecular genetics, 3rd Edition Wiley Bios, 2006.						
ok(s) for reference						
Old RW, Primrose SB, "Principles of Gene Manipulation, An Introduction To Genetic						
Engineering", 3rd Edition, Blackwell Science Publications, 2009.						
Jane K. Setlow, Genetic Engineering: Principles and Methods, Volume 27, Springer						
Science & Business Media, 2006						
lated Online Contents						
Essentials of Molecular Biology, Fourth Edition (2012) by V. Malathi., Pearson Education						
India.						
Microbial Genetics (2012) by K. Chaudhuri, The Energy and Resources Institute,						
TERI.						
Genetics – A Molecular Approach, 6 th Edition (2013) by Bahman Yazdi Samadi, Mostafa						
Valizadeh, University of Tehran Press.						

1	Name of the Course	Solar Panel Installation Technician
2	Name of the Department	Nanoscience and technology
3	Name of the Faculty Member Inter/Intra Department	Dr. C. Viswanathan Associate Professor Department of Nanoscience and Technology Bharathiar University Inter Department
5	Objectives of the Course	The prime objective of the course is to produce highly skilled and technically qualified professional solar panel installers and also to guide them in career opportunities in solar power industry.
6	Topics to be Covered	 i. Understand the basics of electricity and solar energy ii. Understand the site and equipment related requirements for solar PV installation iii. Design a solar PV system as per customer's requirements as well as appropriate codes and standards iv. Install a solar PV system based on the relevant designs v. Maintain a solar PV system and identify and troubleshoot problems vi. Ensure safety while installation and operation vii. Undertake project management for installation of a solar PV system
7	Duration of the Course	1 year
8	Eligibility	B.Sc, in Physics or Electronics
9 10	Registration Description of the Course	 Developing the knowledge basis of the trainee by covering various aspects of solar PV feasibility studies, basics of design, installation, operation and maintenance of solar panels Providing updated teaching materials Covering the technical and other capacity requirements for the solar industry Providing hands-on training in fabrication, design and installation of solar panels Exploring the local and global sectors from the experts
11	Job Opportunities	Solar panel Installation Technician at various electronic sector
12	Number of Candidates	15 No's per year
13	Course Fee	

ORGANIC SOLAR CELLS DEVICE FABRICATION						
Nai	Name of the Department Nanoscience and Technology					
Nai Wit and	Name of the Faculty Member i/cWith Complete Address with Phoneand e-mail					
Inte	er / Intra 🛛	Department Course	Inter Department			
Du	ration of t	he Course	3- 6 month/ 45 hours			
Eliş	gibility		M.Sc. First/Second years: Physics Electronics, Nanoscience	, Chemistry,		
Nu	mber of C	andidates to be Admitted	20			
Mo	de of the (Course	Both Regular and Online			
Col	laboratio	n if any with Companie <mark>s</mark>				
(if Y	Yes, Full A	Address of the Company				
Ado	dress , Nan	ne of the Contact Person,	att Later and			
Pho	one, e-mail	etc.)				
Reg	gistration	Procedure	As per University Norms			
Job	Opportu	nities: Solar Companies				
The	e objective	es of the Course are:				
The	e main obje	ectives of this course are to:				
1	Role of	conjugated organic small mol	ecules and macromolecules			
2	Study of	f conduction, Active and trans	porting layers in OSC Device			
3	The pow	ver <mark>conversio</mark> n efficiency of C	DSC Device and JSC, FF, and FF			
4	Choice of	of s <mark>olvents, a</mark> dditives, and acc	eptor			
5	Device of	characterizations	A			
Cou	arse Conte	ent Lecture / Practical	/ Project / Internship			
Мо	Module 1 Primer of renewable energy: basics and production of energy 2 hours					
Мо	dule 2	Fundamentals of Organic so molecules, conjugated smal	plar cells: Overview of organic	4 hours		
Мо	dule 3	Detailed study of Weak DC	NOR Alternate double bond	4 hours		
Мо	dule 4	Primary requirements for cl	noosing ACCEPTOR and study of	5 hours		
Мо	dule 5	Characteristic behaviors of and active layers	Electrodes, transporting layers,	5 hours		
Мо	dule 6	Study of mono layer, bilaye	er Organic Solar cells device	5 hours		
Мо	dule 7	Bulk heterojunction solar conversion	ell device fabrications and their	5 hours		
Мо	dule 8	Tandem organic solar cells merits and demerits	device fabrication and their	5 hours		
Мо	dule 9	Inverted organic solar cells	device fabrication and stability	5 hours		
Mo	dule 10	Characterizations and OSC	s Applications	5 hours		
Boo	ok (s) for S	Study				
1	Christoph	Brabec, Vladimir Dyakonow.	and Ullrich Scherf, Organic Photovo	Itaics:		
	Materials,	device physics, and manufact	uring technology, Wiley VCH, 2009			

2	Brutting W, Physics of Organic Semiconductors, Wiley VCH, 2005							
Bo	ook (s) for Reference							
1	Hadziioannou G, Malliarass G. G, Semiconducting Polymers: Chemistry, Physics, and							
	Engineering, Wiley VCH, 2007							
2	Klauk H, Organic Electronics: Materials, Manufacturing, and Applications, Wiley VCH,							
	2006							
Re	elated Online Contents							
1	Prof. Soumitra Satpathi, Dept of Physics, IIT Roorkee, Solar Photovoltaics Fundamentals,							
	Technology And Applications, https://nptel.ac.in/courses/115/107/115107116/							
2	G. Chidichimo and L. Filippelli, Organic Solar Cells: Problems and Perspectives, Review							
	Article Open Access, 2010 International Journal of Photoenergy, Article ID 123534 11							
	pages							

NANOTOXICOLOGY – RISK ASSESSMENT AND MANAGEMENT					
Name of the Department	Nanoscience and Technology				
Name of the Faculty Member i/cDr P. P. VijayaWith Complete Address with Phone and e-mailDepartment of Nanoscience and TechnologyBharathiar University Coimbatore - 641 046 Phone: +91 9840868328 E-mail: vijayaparthasarathy@buc.edu.in					
Inter / Intra Department Course	Intra Department Course				
Duration of the Course	6 months				
	1 OK 11 M.Sc.,				
Number of Candidates to be Admitted	25 - 50				
Mode of the Course	Regular / Online / Both Regul	ar and Online			
(if Yes, Full Address of the Company					
Address Name of the Contact Person	Nil				
Phone e-mail etc.)					
Registration Procedure	Online				
Job Opportunities:	Omme				
1. Marie Curie Early Stage Researcher -	-Ph.D., Studentship				
2. Toxicity testing Laboratories in CS	R-Central Leather Research Institut	e (CLRI), CSIR-			
Central Drug Research Institute (CDI	RI) and Universities.	× //			
3. Job Opportunities in Pharmaceutical	companies.				
The objectives of the Course are:					
The main objectives of this course are to:	G				
1 To learn the basic importance and regu	llations of Nanotoxicology in nanoted	chnology fields.			
2 To understand toxicity produced by na	nostructures and methods to reduce t	heir toxicity.			
3 To provide knowledge on social impac	et of nanoindustry.				
4 To design and conduct experiments, as	well as to analyze the results.				
5 To understand the socio-ethical respon	sibility a unappe				
Course Content / Lecture / Pract	ical / Project / Internship				
JOGA	E IU ELEVIT				
Module 1Introduction – Definition	of terms-Toxicity-Hazards and	6 hours			
hazard types and assessmer	nt of risk.				
Module 2Concept of Nanotoxicolog	gy - Laboratory rodent studies - 6 hours				
Ecotoxicologic studies - M	Aethodology for Nanotoxicology -				
in vitro and in vivo toxicity	testing				
Module 3 Mechanism of nanosize pa	article toxicity - Reactive oxygen	6 hours			
species meditated NSP	toxicity - Interactions between				
Haalth Effects	g Organisms: Mechanisms and				
neatin Effects					
Modulo 1 Interactions of Nonconstin	lag with Calls and their Callular	6 hours			
Module 4 Interactions of Nanopartic	les with Cells and their Cellular	6 hours			
Module 4 Interactions of Nanopartic Nanotoxicology - Cytoto Cytotoxicity and Potentia	les with Cells and their Cellular oxicity of Ultrafine Particles -	6 hours			

Mo	odule 5	Nanopollution – Nanomaterials in Environment - Toxicology	6 hours			
		of Airborne - Manufactured nanomaterials in the				
		environment- Physicochemical characteristics of				
		nanomaterials.				
Mo	odule 6	Biological Activities of Nanoparticles - nanoparticles	6 hours			
		interaction with biological membrane-Entry routes into the				
		human body- Disposition of NSPs in the respiratory				
Mo	odule 7	Portals of entry and target tissue – Risk assessment – Ethical	6 hours			
		– Legal and Social Implications				
Mo	odule 8	Nanoparticle Toxicology and Ecotoxicology, The Role of	6 hours			
		Oxidative Stress – Development of Test Protocols for				
		Nanomaterials – Regulation of Engineered Nanomaterials.				
Mo	odule 9	Nanotechnological Risks – Understanding of	6 hours			
		Nanotechnology's Social Impacts -Nanotechnology in the				
		Media. Educating Undergraduate Nanoengineers, Education				
		Opportunities – Human Resources for				
М	dulo 10	Ethical Jasuas in Nanoscience and Nanotochnology Ethics	6 hours			
IVIC	Jaule 10	& Law in a New Frontier. An Exploration of Patent Matters	o nours			
		Associated with Nanotechnology				
		Associated with Nanotechnology				
Bo	ok(s) for S	tudy				
1	N. Dura	a S.S. Guterres, O.L. Alves, Nanotoxicology, Materials, Met	hodologies and			
-	Assessme	ents, Springer, Newvork, 2014.	nouologies, unu			
2	T. Otsuk	ki, Y. Yoshioka, A. Holian, Biological Effects of Fibrous	and Particulate			
	Substance	es, Springer, Japan, 2016.				
3	A.M. Ga	tti, S. Montanari, Case Studies in Nanotoxicology and Parti	cle Toxicology,			
	Academi	c Press, UK, 2015.				
Bo	ok(s) for r	eference				
1	Nancy	A. Monteiro-Riviere, C. Lang Tran, Nanotoxicology: Pro	ogress towards			
	Nanomedicine, Second edition, CRC Press, Taylor and Franscis, Boca Raton, 2014.					
2	2 G. Ramachandran, Assessing Nanoparticle Risks to Human Health, William Andrew,					
	Elsevier, USA, 2011.					
3	J. Njuguna, K. Pielichowski, H. Zhu, Health and Environmental Safety of Nanomaterials:					
	Polymer Nancomposites and other material containing nanoparticles, Woodhead					
	FUUIISIIII	g, $Eiseviei$, UK , 2014 .				
Pa	lated Only	ne Contents				
1	Encyclor	rectiant for the second s				
2	Current	Nanotoxicity and Prevention Volume 1 2	Issues 2020			
4	ISSN· 26	65-9816	155005, 2020			
3	Toxicolo	gy of Nanomaterials				
5	Editor(s)	Yuliang Zhao, Zhivong Zhang, Weivue Feng. 2016.				
	(0)					

Cour	Course code RECENERATIVE MEDICINE L T					Р	(
Core			RECEIVERATIVE WEDICINE	4	0	0	4
Pre-requisite			This course is unique and innovative provides exposure to the students in the recent advances in medical science. The students are expected to have strong knowledge in material science and knowledge in biological systems.	Sylla Vers	bus ion	202 0 - 202 1	
Cour	se Objec	tives:					
1. 1 2. 1	The cours from basic Further, t technique	se aims t c biology the court s to the p	o provide an in-depth knowledge of the field of regener of stem cells to therapeutic applications. rese aimed to provide the translational knowledge of participants.	erative f me	e me	dicine, e and	
Evne	cted Cou	rso Aut	20mac:				-
Afte	er the com	pletion c	f the course, the student will have the following capability	ies:			-
1	Describe	regenera	tive medicine and their specific characteristics.			K X	
2	Describe tissue en	methods gineering	of applications to replace damaged or destroyed cells inc	cludin	g	K X	
3	Account	for reger	herative medicine applications to human diseases.			K X	
4	Account research	for <mark>and e</mark> field, the	valuate current theories, methods and techniques within the practical execution and application.	the		K X	
5	Compile, orally an	, criticall d in writi	y analyze and evaluate research results and present these	both		K X	
K1 ·	- Rememb	per; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; 1	K6 - (Create	e	
		5		9	7		1
Uni	t:1		Basics of Regenerative Medicine		12 ł	nours	
Rege	nerative	Medicir	e: Introduction- Bioreactors-Key Features-Controlled	cultur	e-Phy	ysical	
condi	tion of de	veloping	tissues-Bioreactor based products.				
Uni	t:2		Nanomaterials for Regenerative medicine		<u>12 k</u>	nours	_
Nano Type regen	Nanomaterials and Nanocomposites for Regenerative medicine: Perspective introduction- Types of nanocomposite 3D scaffolds-Drug free organ replacement-Carbon based composite regenerative medicine.						
Uni	t:3		Surface Modification for Cell Interaction		12 ł	nours	
Chen	nical and	l Physic	cal modified biomaterials for cell adhesion: Generation	al int	rodu	ction-]
Meth	ods to g	generate	the nanostructured surface-Self assembled monolay	er ba	ased	poly	
(orga	nosiloxan	es)- Inje	ctive hydrogels: Introduction-Methods of preparation	-Chei	nical	and	
Physi	cal reticu	lation pr	beess-Properties-Major issues on injectable process.				-
Uni	t•4		Cellular Theraneutics		121	nurs	-
Introd	duction to	stem	cells-Molecular and cellular bases of tissue and organ	n dev	elon	nent-	1
Thera	apeutic us	es of ster	n cells-Molecular bases of dieases-Bio-Artificial organs.		-1-		
Uni	t:5		Tissue Therapy		12 k	nours	
Engir	neering of	f small	and large diameter blood vessels-Cardiac tissue-Intrace	orpore	al k	idney	

sup	port-Genito	o urina	ary sys	tem-Repro	ductive	syster	m-Tissue	therapy in	plications of
regenerative medicine-Current issues and challenges.									
Unit:6 Contemporary Issues 2 hour							2 hours		
Cui	rent challer	nges and	l regulate	ory issues w	vill be ad	ldresse	d by the ex	perts in the re	espective
dor	nain.								
		1							
							Total Lect	ure hours	62 hours
Te	ext Books								
1	Principles	of Rege	enerative	Medicine,	Anthony	/ Atala	, Robert La	nza, Tony M	ikos, Robert
	Nerem, 3 rd	¹ edition	n, 2018 , 1	SBN: 978	01280988	306.			
2	Nanomate	rials for	regener	ative medic	cine, Tek	inay, A	Ayse, Spring	ger, 2019, IS	BN: 978-3-
	030-31202	2-2.							
						100			
R	eference Bo	ooks			0000	32°65	26		
1	Foundatio	n of Reg	generativ	e Medicine	e, Anthor	iy Atal	a, 1 rd editio	<mark>on, 2009, IS</mark> B	SN:
	97801237	85626.	1				10		
2	Advances	in Reg	enerative	Medicine:	Role of	Nanot	technology.	and Engine	ering Principles.
	Venkatrar	n Prasad	1 Shastri	. George A	ltankov.	Andre	as Lendlei	n. ISBN 978	-90-481-8788-1.
	2007.		SI	, , , , , , , , , , , , , , , , , , , ,	MALL	D	YE.	6	
				4-1					
45									
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1 https://www.ncbi.nlm.nih.gov									
2	2 https://onlinelibrary.wiley.com								
Cou	urse Design	ed By	Dr A. N	4. Ballamu	iragan	~	e-mail	balamuru n	gan@buc.edu.i
			1 39	Here.	2	en			

315,55

BHARATHIAR UNIVERSITY:: COIMBATORE 641046 DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY M.Sc., NANOSCIENCE AND TECHNOLOGY (For the candidates admitted from the academic year 2020-21 onwards)

Overview, Curriculum and Syllabus

Duration: 2 Years

Level: Post-Graduation

Type: PG. Degree

Eligibility: Any undergraduate Science Degree recognized by UGC

VISION: To achieve excellence in the field of Nanoscience and Technology through academic and research programs and to participate in the interdisciplinary programs offered in the University.

MISSION: As a Department, We are committed to,

- Provide knowledge and skill in Nanoscience and Technology through post-graduate and doctoral programs.
- Undertake research in emerging areas of physical, chemical and biological sciences with Nanoscience and Technology and transform the findings for the benefit of the society.
- Solve the environmental issues through the post graduate and research programs.
- Provide required knowledge in physical, chemical and biological sciences to understand Nanoscience and Technology for research.

Career Opportunities: M.Sc. Nanoscience and Technology graduates have plethora job opportunities in the following fields;

- Research Scientist and formulation scientist
- Nanomaterial Product developer
- Government agencies for regulatory monitoring
- Patent examiner
- > Entrepreneurship
- Consultancy organizations in pharmaceuticals, Energy, Material Science, Medical, Agriculture, Environment Protection.
- Job in Scientific Research Organizations.
- > Enroll for higher degree through research in India or abroad
- ➢ Healthcare industry
- > Teachers Recruitment Board (TRB) Tamil Nadu for Arts and Science College.