A three-year Under-Graduate Programme in

B. Sc. (Blended) Physics

Offered By Centre for International Affairs (CIA), Bharathiar University

in collaboration with The University of Melbourne

(For the students admitted during the academic year 2023 – 24 onwards)

Syllabus for SEM I - VI

(To Be Implemented from Academic Year 2023 - 2024)

Overview of the B. Sc. (Blended) Course

Bharathiar University is offering an innovative Bachelor's Degree known as B.Sc. (Blended) in collaboration with the University of Melbourne (UoM), Australia, to strengthen science education at the undergraduate level.

Bharathiar University is among the top universities in the country and has been at the forefront of initiating innovative programs. The UoM is ranked #1 in Australia and has been among the top 50 universities in the world.

The B.Sc. (Blended) course is a joint initiative of BU-UoM, offering a transparent and internationally recognized bachelor's degree that clearly outlines the teaching objectives and learning outcomes. In the first two years of the degree program, students will study all four basic sciences (Biology, Chemistry, Mathematics, and Physics), and in the third year, they will specialize in either Physics or Chemistry. The UoM will provide support in terms of special lectures, workshops, and quality assurance.

The B.Sc. (Blended) course aims to achieve the following objectives:

- Introduce students to the fundamental concepts of science education.
- Enrich students' knowledge in all basic sciences, including Biology, Chemistry, Mathematics, and Physics.
- Help students develop an interdisciplinary approach to learning that integrates various scientific fields.
- Inculcate a sense of scientific responsibility, social awareness, and environmental consciousness in students.
- Assist students in building a successful and progressive career in academia and industry by providing them with the necessary skills and knowledge.

The B.Sc. (Blended) course will be jointly conducted by Bharathiar University and the University of Melbourne (UoM).

The following features are included in the course:

- Special lectures will be delivered by expert faculty from UoM.
- The course will be quality assured by UoM, ensuring that it meets the highest standards of education.
- Upon completion, the degree will be considered equivalent to a degree from UoM, enabling students to pursue higher studies at UoM or any other Australian university.
- The collaboration with UoM ensures that students receive an internationally recognized education of the highest quality, opening up opportunities for further academic pursuits and careers in various fields. The students will be imparted solid training to enable them to pursue Masters and Integrated Ph. D. degrees in reputed institutes such as IITs, IISERs and Central Universities

Eligibility

Higher Secondary School Certificate (10+2) or its equivalent Examination in Science stream with either PCM group (Physics, Chemistry & Mathematics) or PCMB group (Physics Chemistry, Mathematics & Biology)

Course Structure

- The B.Sc. (Blended) course follows a semester and credit system that spans over six semesters of 14-16 weeks each. The course curriculum is divided into two phases: the first two years and the third year.
- During the first two years, students will receive instruction in the four basic sciences, namely Biology, Chemistry, Mathematics, and Physics. In the third year, students will specialize in either Physics or Chemistry.
- The curriculum is designed to provide students with a well-rounded education in the sciences, preparing them for further academic pursuits or careers in various scientific fields.

Examination and Grading

- The B.Sc. (Blended) course follows a credit-based system, and its examination process comprises two parts: continuous assessment (internal 50%) and end-semester examination (50%).
- The internal assessment will be based on various parameters, including classroom examinations (subjective/objective), fieldwork, viva-voce, assignments, lab work, tutorials, and group discussions. The grading will be carried out in accordance with the university norms applicable to the credit system.
- This examination process ensures that students are regularly assessed and evaluated based on their academic performance, facilitating a more comprehensive understanding of the subjects and enhancing the overall learning experience. The grading will be as per the university norms applicable to credit system.

University Terms

- The commencement and conclusion dates for the odd and even semesters of the B.Sc. (Blended) course will adhere to the university regulations applicable to other departments.
- To be eligible for the term-end examination, students must fulfill the minimum attendance requirement of 75 percent for both theory and practical courses. Additionally, students must demonstrate satisfactory performance during the term.

 Adherence to these guidelines ensures that students attend classes regularly and maintain consistent academic performance throughout the term. This, in turn, promotes a positive and conducive learning environment for all students.

Intake capacity of student: B. Sc. Blended course: 40 (20 for Physics and 20 for Chemistry)

Duration: The duration of **B. Sc. (Blended)** Degree Program shall be of three years.

Medium of Instruction: The medium of instruction for the course shall be English.

Number of weeks in a semester: 14-16 (excluding holidays and one week mid semester examination)

Nomenclature: BIO: Biology. CHM: Chemistry. MTH: Mathematics PHY: Physics ENG: English; COMP –Computing; IDC: Interdisciplinary Course; FLX: Flexible timetabling

Course	Title of the Courses Credite Hours		ours	Maximum Marks			
Code	litle of the Course	Credits	Theory	Practical	CIA	ESE	Total
		FIRST SEM	ESTER	I	II		
MTH101	Maths 1: Calculus	4	4	-	50	50	100
PHY101	Physics 1: Introductory Classical Physics	4	4	-	50	50	100
CHM101	Chemistry 1: Introductory and Organic Chemistry	4	4	-	50	50	100
BIO101	Biology 1: The Diversity of Life	4	4	-	50	50	100
PHY102	Physics Practical	2	-	2	25	25	50
CHM102	Chemistry Practical	2	-	2	25	25	50
BIO102	Biology Practical	2	-	2	25	25	50
11T/11H/11M (FLX101*)	Part I: Language Paper I- Tamil/Malayalam/French/ Hindi	4	4	-	50	50	100
12E (FLX102**)	Part II: English I	4	4	-	50	50	100
1FA [#]	Foundation Course: Environmental Studies	2	2	-		50	50
				-			
Total 32 26 6 375 425 800							
* and ** indicates the mandatory language papers for all UG students as per the TN state government. # indicates the UGC mandatory course that all students must opt for. This course will be taught either in online mode or offline mode.							

1 Credit =1 Contact hour per week both for theory and lab courses

	SI	ECOND SEI	MESTER				
MTH201	Maths 2: Algebra	laths 2: Algebra 4 4 - 50 50					
PHY201	Physics 2: Modern Physics	4	4	-	50	50	100
CHM201	Chemistry 2: Inorganic and Physical Chemistry	4	4	-	50	50	100
BIO201	Biology 2: Biology of Cells	4	4		50	50	100
PHY202	Physics Practical	2	-	2	25	25	50
CHM202	Chemistry Practical	2	-	2	25	25	50
BIO202	Biology Practical	2	-	2	25	25	50
IDC201	Scientific Computation and	4	4	-	50	50	100

	Modeling: Introduction to simple models and programming						
	Part I: Language Paper II-	4	4	-	50	50	100
21T/21H/21M	Tamil/Malayalam/French/						
(FLX201*)	Hindi						
22E	Part II: English II	4	4	-	50	50	100
(FLX202**)							
0FD#	Foundation Course:	2	2	-		50	50
2FB"	Human Rights						
Total 36 30 6 425 475 900							
* and ** indicates the mandatory language papers for all UG students as per the TN state government.							
1							

indicates the UGC mandatory course that all students must opt for. This course will be taught either in online mode or offline mode.

	T	HIRD SEN	IESTER					
MTH301	Maths 3: Vector Calculus, and Differential Equations	4	4	-	50	50	100	
PHY301	Physics 3: Quantum mechanics and Thermodynamics	4	4	-	50	50 50 100		
CHM301	Chemistry 3: Reactions and Synthesis	4	4	-	50	50	100	
BIO301	Biology 3: Functional Biology of Organisms	4	4	-	50	50	100	
PHY302	Physics Practical	2	-	2	25	25	50	
CHM302	Chemistry Practical	2	-	2	25	25	50	
BIO302	Biology Practical	2	-	2	25	25	50	
IDC301	Scientific Computation and Modeling: Projects	2	-	2	25	25	50	
31T/31H/ 31M	Part I: Language Paper III- Tamil/Malayalam/French/ Hindi	4	4	-	50	50	100	
32E	Part II: English III	4	4	-	50	50	100	
3FC [#]	Value added 3/Foundation Course: Yoga for Human Excellence	2	2	-		50	50	
	Total		26	8	400	450	850	
* and ** ir	dicates the mandatory langua	are paper	s for all UC	students a:	s ner the	TN state	2	
governmer	nt.	190 holbo.	5 joi an e e		por the	111 000.00	-	

indicates the UGC mandatory course that all students must opt for. This course will be taught either in online mode or offline mode.

		FOURT	'H SEMEST	ER			
MTH401	Maths 4: Probability and Statistics	4	4	-	50	50	100
PHY401	Physics 4: Electricity, magnetism, Special Relativity and Optics	4	4	-	50	50	100
CHM401	Chemistry 4: Structure and properties	4	4	-	50	50	100
BIO401	Biology 4: Genetics Evolution and Ecology	4	4	-	50	50	100
PHY402	Physics Practical	2	-	2	25	25	50
CHM 402	Chemistry Practical	2	-	2	25	25	50
BIO402	Biology Practical	2	-	2	25	25	50
41T/41H/ 41M	Part I: Language Paper IV- Tamil/Malayalam/French/ Hindi	4	4	-	50	50	100
42E	Flexible timetabling Part II: English IV	4	4	-	50	50	100
4FC [#]	Value added 4/Foundation Course: General Awareness	2	2	-	-	50	50
	Total	32	26	6	375	425	800
* and ** ind government # indicates	dicates the mandatory langud t. the UGC mandatory course t either in on	age paper hat all stu line mode	s for all UC Idents mus e or offline	G students as t opt for. Thi mode.	per the	TN state	e taught

		FIFTH SEM	ESTER				
PHY 501	Classical Mechanics	4	4	-	50	50	100
PHY 502	Quantum Mechanics	4	4	-	50	50	100
PHY 503	Solid State Physics	4	4	-	50	50	100
PHY 504	Electrodynamics	4	4		50	50	100
PHY 505	Elective – 1: Introduction to Astrophysics	2	2	-	25	25	50
PHY 506	Elective – 2: Nanotechnology	2	2	-	25	25	50
PHY 507	Physics Lab I	2	-	2	25	25	50
PHY 508	Physics Lab II(analog and digital)	2	-	2	25	25	50
	Graduate Level Thesis	2	-	2	25	25	50

PHY 509							
	Total	26	20	6	325	325	650
	SIXTH SEMESTER						
PHY 601	Statistical Mechanics	4	4	-	50	50	100
PHY 602	Subatomic Physics	4	4	-	50	50	100
PHY 603	Atomic and Molecular44-Spectroscopy and Lasers4-		-	50	50	100	
PHY 604	Digital and analog electronics	4	4	-	50	50	100
PHY 605	605 Elective - 3: Renewable Energy and Energy Harvesting		2	-	25	25	50
PHY 606	Elective - 4: Introductory Biophysics	2	2	-	25	25	50
PHY 607	Physics Lab I	2	-	2	25	25	50
PHY 608	Physics Lab II (analog and digital)	2	-	2	25	25	50
PHY 609	Graduate Level Thesis	2	-	2	25	25	50
	Total	26	20	6	325	325	650
	Grand Total	186	148	38	2225	2425	4650

SEMESTER I

Course code	MTH101	Maths-1	4 Cr	edits				
Core/Elective/	′SBS	CORE PAPER						
			Syllabus Version	2023-24				
Unit-1:Logic a	Unit-1:Logic and Proof							
Basic set theory(review) Logical connectives (conjunction, disjunction, negation, conditional, bi-conditional)and truth tables								
Propositional I	ogic, logical	equivalence, logical laws						
Quantifiers, pr	edicate calc	ulus						
Relations, equi	ivalence rela	tions, ordering						
Functions inclu	Iding injectiv	e, surjective, bijective, inverse, composition						
Unit-2:								
Number syster	ns: Natural r	numbers, integers, rational numbers and their						
Properties(eg.	closure und	er addition/multiplication/division; existence of						
	plicative idei	ntity/inverses)						
Real numbers	and their pro	operties; completeness property						
Proof methods	s. un ect prot	on proof by cases						
Proof methods	induction	on, proor by cases						
Natural number	ers integers	rational numbers						
Real numbers	ins, integers,							
Unit-3: Sequer	nces and ser	ies						
Sequences. lim	nits. converg	ence and divergence						
Proving limits	using definit	ion						
Methods for e	valuating lim	its: standard limits, limit theorems, continuity						
rule, sandwich	theorem							
Series, conver	gence and di	vergence of series, geometric series, harmoni cp-	series					
Series converg	ence tests: c	livergence test, comparison test						
Series converg	ence tests: r	atio test, integral test, alternating series test						
Power series,	Taylor polyno	omials						
Taylor series								
Taylor's theore	em, error in	Taylor polynomial estimates						
Unit-4: Differe	ntial calculu	s& Integral Calculus						
Review of diffe	erential calcu	llus: limits, derivative, differentiation rules incl. p	olynomials	5,				
trigonometric,	exponential	, log functions; product, quotient, chain rules						
Review of inve	rse trigonon	hetric functions and their derivatives, implicit diff	erentiation	ו				
Diamann integ	15 ration							
Fundamental	i allUll Theorem of (Calculus: review of standard anti-derivatives						
Techniques of	integration(review): derivative present substitution linear su	hstitution					
Unit-5		every, derivative present substitution, initial su						
Techniques of	integration	review): integration of trigonometric functions						
Using identitie	S							
Techniques of	integration (review): integration of rational functions						
Including parti	al fractions,	integration yielding inverse trig functions						

Techniques of integration (review): trigono metric substitutions;

Integration by parts

Improper integrals

Applications of integration: areas between curves

Applications of integration: volumes of surfaces of revolution

Ordinary differential equations: definition of ODE, order, general solution, initial conditions; separable ODEs

Solving linear ODE using integrating factor

Particular solutions of in homogeneous constant coefficient linear ODEs Using method of undetermined coefficients; principle of superposition

Reference Books

Discrete Mathematics and Its Applications with Combinatorics and Graph Theory (SIE) (7th Edition) by Kenneth Rosen. Publisher: McGraw Hill Education; Year: 2017; ISBN-13: 978-0070681880, 998 pp.

Mathematical Proofs: A Transition to Advanced Mathematics (Featured Titles for Transition to Advanced Mathematics) by Gary Chartr and, Albert D. Polimeni, Ping Zhang. Publisher: Pearson; Year: 2012; ISBN-13: 978-0321797094; 424 pp.

Calculus by James Stewart. Publisher: Cengage Learning; Year: 2015; ISBN-13: 978-1285740621; 1392 pages

Calculus: Concepts and Contexts, by James Stewart. Publisher : Brooks/Cole; Year: 2015; ISBN-13 : 978-1337687669; 1152 pages.

Calculus: A Complete Course by Robert Adams, Christopher Essex. Publisher : Pearson; 9th edition; Year: 2015; ISBN-13 : 978-0134154367; 1168 pages.

Course code	PHY101	Physics 1: Introductory Physics	4 Credits
-------------	--------	---------------------------------	-----------

Core	e/Elec	tive/SBS	CORE PAPER				
				Syllabus Version	2023-24		
Uni	it:1		Classical Mechanics				
Strai	Straight line motion - Vectors - Two and three dimensional motion - Force and Motion :						
New Pote Angu	Newton's Laws – Force and Motion : Drag and Friction – Kinetic energy, work, power – Potential energy, conservation of energy – Collisions and momentum – Rotational motion – Angular momentum-I – Angular momentum-II						
Uni	it:2		Gravitation				
and satel grav Uni	and within the earth - Work and gravitational potential energy - Kepler's laws : the planets and satellites - Orbital motion and energy - Einstein, the equivalence principle, gravity, gravitational lenses, gravitational waves Unit:3 Thermal physics						
conc	luctio	n, emission, abso	prption				
Uni	Unit:4 Elasticity, fluids and gases						
Cont mole exan atmo	inuity ecular nples: osphe	y and Bernoulli's speed distribut wind power, hy re	Equation – Ideal gases (Kinetic theory of gases) ion – Specific heat, adiabatic expansion – Real dro, blood circulation, water in plants, materials,	- Mean f world ex osmosis,	ree path, amples – wind and		
Uni	it:5		ODEc				
Appl circu	icatio iits – I	ons of 2 nd order (Real world conte	DDEs: Springs – Applications of 2 nd order ODEs: I xtual examples in physics and application of ODEs	RC series	electrical		
Text	Book	(s)					
1	Prop	perties of Matter	Brijlal and N.Subrahmanyam,3rdEdition, S.Chand	l & Co.(20	05).		
2	Heat	t & Thermodynai	nics, Brijlal & N.Subramaniam, S.Chand & Co(200	7)			
Refe	Reference Books						
1	1 Elements of Properties of Matter, D.S.Mathur, 11thEdition, S.Chand &Co.,(2010).						
2	Heat	t and Thermodyr	amics-Zemansky and R.H.Dcltanann,TMH (2017)				
Kela			MUUC, SWAYAM, NPIEL, Websites etc.,]				
2	http	s://latestconter	statoronnine.co.uk/alevelphysicshotes/				
3	http	s://www.askiiti	ans.com/revision-notes/physics/thermodynamic	:s/			
4	4 www.khanacademy.org/science/physics/elasticity/surfacetension						

Cour	se Code	CHM101	GENERAL CHEMISTRY - CHEMISTRY OF LIFE	4 Credits				
	C	ORE	Chemistry 1					
				Syllabus Version	2023- 2024			
U	JNIT I		General Chemistry					
The F Mole Chara Prope and N	The Periodic Table - The Basis of the Periodic System, Classifications of Elements and Groups - Molecular Structure and Bonding - Chemical Bonding, Types of Chemical Bonds, Bond Characteristics - Acids and Bases - Theories of Acids and Bases, pH of Acids and Bases, Properties of Acids and Bases - Stoichiometry - Stoichiometric Coefficient, Balanced Reactions and Mole Ratios							
U			Organic Chemistry					
Carbo Struc sp ² Hy hybri	Carbon - The Basis of Life - Structure and Bonding Alkanes - Alkanes Formula and its Condensed Structures, Branched Chain Alkane Formula, sp ³ Hybridisation - Structure and Bonding Alkenes - sp ² Hybridisation - Benzene and its derivatives - Structure and Bonding of Alkynes - sp hybridization							
U			Organic Chemistry					
Funct Nucle Electi React	tional (eophiles rophilic tions	Groups - Nom - Nucleophilic S Aromatic Substi	enclature of Common Functional Grou Substitution Reactions - Elimination Reaction tution Reactions - Nucleophilic Addition Re	ups -Electrop ns - Addition I eactions - Org	hiles and Reactions - anic Redox			
U			Physical Chemistry					
First Cyclio Entro	Law of cal Proce opy, Free	f Thermodynam esses, Free Expa e Energy, Real wa	nics-Adiabatic processes, Constant Volum ansions - Second Law of Thermodynamics orld Examples - Solar Energy, Geothermal, V	e Processes, - Irreversible Vind Power	Enthalpy, Processes,			
U	NIT V		Applications of ODEs					
Appli React Home Coeff	Applications of 1 st Order ODEs: Ecology Models - Applications of 1 st Order ODEs: Chemical Reaction Rates, Newton's Law of Cooling - Second-Order ODEs: Definitions of Homogeneous/Inhomogeneous, Linear/Non-linear ODEs -Solution of Homogeneous Constant- Coefficient Linear ODEs.							
Те	xt Book(s)		I				
1	Principle	es of Physical Ch	emistry, B.R. Puri, L.R. Sharma, S.Chand& Co	р.				
2	Inorgan	ic Chemistry, P.	L. Soni, Sultan Chand & Sons.					
3	3 A Textbook of Organic Chemistry, Arun Bahl, B.S. Bahl, S.Chand& Co.							

4 Organic Chemistry, Vol. 1, 2 & 3, S. M. Mughergee, S.P. Singh, R.P. Kapoor, Wiley Eastern.

Reference Books

- 1 Advanced Organic Chemistry, B.S. Bahl, Arunbahl, S.Chand & Co.
- 2 Essentials of Physical Chemistry, B.S. Bahl and G.D. Tuli, S.Chand & Co.
- 3 Text book of Physical Chemistry, P.L.Soni, D.B. Dharmarke, S.Chand & Co.
- 4 Ordinary Differential Equations with Applications, Sze-Bi Hsu, World Scientific Publishing Co. Pte. Ltd

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1	https://chem.libretexts.org/
2	https://byjus.com/chemistry/
3	https://openstax.org/details/books/chemistry-2e

Course code	BIO101	Biology 1: Diversity of Biology	4 Credits
-------------	--------	---------------------------------	-----------

Core/	/Elec	tive/SBS	CORE PAPER					
				Syllabus Versi	on	2023-24		
Unit	t:1		Origin of life					
Theory of Evolution: Understanding Life's diversity – Evolutionary relationships (phylogenies) classifications – Chemical evolution of life – Molecules to cells– Cell theory and the origin of life								
Unit	t:2	Prokaryotes and	Eukaryotic Origin					
Proka Protis apico	aryoti sts 1 omple	ic Cells: Bacteria – Red and Gre exans, flagellates	and Archaea –Evolution of the eu en algae- Protists 2 – Chromists – , ciliates, amoebae	karyotic cell – I Protists 3 – Din	Endosy Ioflage	mbiosis – llates and		
Unit	t:3		Multicellularity and Kingdom Fungi					
Evolu	ition	of sex, life cycles	- Origins of multicellularity -Slime	moulds and fun	gi –Fun	gi 2		
Unit	t:4		Kingdom Plantae					
Introd early Conif fertili	ductio fossi er div zatio	on to Land Plant il land plants –S versity and biolo n –Angiosperm J	s –Bryophytes – Evolution of vascul eed plants, the seed and secondar gy –Angiosperm structure, biology a phylogeny and evolution	ar tissue, Lycopł y growth, Cycae and diversity, th	nytes, f ds and e flowe	ern allies, Ginkgo – er, double		
Unit	t:5		Metazoa					
Introd Mollu coela	ductio uscs, cantl	on to animals (N Arthropods, De n, lungfish–Ampl	1etazoa)- Simple animals – Protosto uterostomes, Echinoderms-Chordat nibians, Reptiles, Birds, Mammals, Th	omes Flatworm es, Fishes-sharl ne Primate story	s and a ks/rays	annelids, - , teleosts,		
TextE	Book((s)						
1	Evolu	ution, Strickberg	er. Fifth Edition, Jones and Bartlett I	Publishers, Inc (2	2013).			
2	2 Biology, P.H. Raven, G.B. Johnson, K.A. Mason, L. Jonathan, T. Duncan, Twelfth Edition, McGraw Hill (2019)					h Edition,		
Refer	ReferenceBooks							
1	Cam Reec	pbell Biology e11thEdition,Pe	, L. Urry, M. Cain, <u>S. V</u> arson,(2017).	Vasserman , P.	Mino	<u>orsky</u> , J.		

2	Evolution, <u>Douglas Futuyma</u> , <u>Mark Kirkpatrick</u> , 4 th edition, Sinauer, 2017					
Rela	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.,]					
1	https://www.easybiologyclass.com/chemical-evolution-theory-biochemical-origin-of- life-short-lecture-notes/					
2	https://bio.libretexts.org/Introductory_and_General_Biology/ Diversity_of_Microbes_Fungi_and_Protists					
3	https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/ _Diversity_of_Plants					
4	https://www.khanacademy.org/science/biology-india/ animal-kingdom					

Course code	PHY102	PHYSICS PRACTICAL 1	2 C	redits
Core/Electiv	e/SBS	CORE PRACTICAL		
			Syllabus Version	2023-24

2.	Simple Pendulum: To plot a L-T ² graph using a simple pendulum and	find the	
	effective length of the simple pendulum for a given time period using	g the graph.	

- 3. To calculate the acceleration due to gravity at a place.
- 4. Torsional Pendulum: To find the moment of inertia of the disc and the rigidity modulus of the material of the suspension wire subjected to torsional oscillations.
- 5. Young's Modulus: To determine the Young's modulus of elasticity of the material of a given wire using Searle's apparatus.
- 6. Spring: To determine the restoring force per unit extension of a spiral spring by statistical and dynamical methods and also to determine the mass of the spring.
- 7. Euler's Method: To determine the coefficient of friction by Euler's Method.
- 8. Viscosity: To determine Coefficient of Viscosity by Stoke's Method.

Reference Books 1 AtextbookofpracticalPhysics,M.N.Srinivasan,S.Balasubramanian,R.Ranganathan,Sultan Chand & Sons (2017) 2 PracticalPhysicsandElectronics,C.C.Ouseph,U.J.Rao,V.Vijayendran,S.Viswanathan 2 PracticalPhysicsandElectronics,C.C.Ouseph,U.J.Rao,V.Vijayendran,S.Viswanathan

² Publishers (2007)

LIST OF EXPERIMENTS

Related Online Contents[MOOC, SWAYAM, NPTEL, Websites etc.]

https://nptel.ac.in/course.html/physics/experimentalphysicsI,IIandIII https://nptel.ac.in/courses/115/105/115105110/

https://www.youtube.com/playlist?list=PLuiPz6iU5SQ8-rZn_LgLofRX7n8z4tHYK

Course Code Core/	CHM102 Elective/SBS	CHEMISTRY PRACTICAL 1 CORE PRACTICAL	_	2 Cre	dits
			Syllab Versio	ous on	2023-24
		List of Experiments			

List of Physical chemistry experiments (Any 2)

- 1. To determine the rate constant of the hydrolysis of Ethyl acetate using an acid catalyst.
- 2. Molar mass determination of some base metals, gases.
- 3. Determination of dissociation constant of a weak acid.
- 4. Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known substance.
- 5. Calculation of the enthalpy of ionization of ethanoic acid.

List of Inorganic chemistry experiments (Any 2)

Basic Analytical Terms: Volumetric and Gravimetric analysis, Titration, Types of titration viz. acid base, redox, iodometric, iodometric and complexometric titrations, Types of indicator, Aquametry (Karl-Fisher titration)

- 1. Oxalate Complexes of Aluminum and Chromium.
- 2. Estimation of Fe (II) with $K_2Cr_2O_7$ using internal external (diphenylamine, anthranilic acid) and external indicator.
- 3. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 4. Estimation of Fe (II) and oxalic acid using standardized $KMnO_4$ solution.

List of Organic chemistry experiments (Any 3 in Each Group)

1. Techniques:

Crystallization, Sublimation, Distillation, Steam Distillation, Vacuum Distillation, Column Chromatography, Thin Layer Chromatography. Record Melting Point & Boiling Point.

2. Functional group tests following functional groups

Alcohols, Alkenes, Aldehydes and Ketones, Acids, Phenols, Amines, Amides, Esters, Aromatic compounds.

3. Preparations:

Preparation of 4, 4'-Dimethoxy-dibenzylideneacetone Preparation of 4-tert-Butylphenol

	Reduction of p-nitro benzaldehyde by sodium borohydride Nitration of Salicylic acid by green approach (using ceric ammonium nitrate). Bromination of cinnamic acid.
Text	Book(s)
1	Basic Principles of Practical Chemistry, Kulandaivelu A.R., Veeraswamy R., Venkateswaran, Sultan Chand & Sons, 2017
2	Practical Chemistry for B.Sc Chemistry, A.O. Thomas
3	Practical Chemistry, Pandey D.N., Sultan Chand Publishers, 2018
4	https://www.freebookcentre.net/chemistry-books-download/Chemistry-Laboratory- Manual-by-CSOS.html
Refe	erence
1	Vogel's Text book of Practical Organic Chemistry, Brian S. Furniss, Antony J.Hannaford, Peter W. G. Smith, Fifth Edition, Bath Press, Great Britan, 1989
2	Vogel's Textbook of Quantitative Chemical Analysis, G H Jeffery, J Bassett, JMendham, R C Denney, Fifth Edition, Bath Press, Great Britan, 1989

Cou	rse code	BIO102	BIOLOGY PRACTICAL	2 Credits			
Core	e/Elective	/SBS	CORE PRACTICAL				
		Syllabus Version	2023-24				
			List of Experiments				
1.	1. Basic instrumentation techniques – Principles and Operation						
2.	Laborate	ory Sterilizat	ion Methods - Principles and Operation				
3.	Estimati	ion of protei	ns: Bradford Assay				
4.	Estimati	ion of DNA: [PPA(diphenylamine)method				
5.	Identific	ation of sug	ars/carbohydrates.				
6	Observa	ation of zoon	lankton from pond samples under microscope				
7	Determi	ination of die	solved ovvgen in water sample				
/.	Determi						
Text	Book(s)						
1	Laborato	ory manual ir	biochemistry by J. Jayaraman, Wiley Eastern Publ	ishers			
2	Biochem Publishe	nical Method ers	s- Sadasivam and Manickam, 3rd Edition, New Age	e Internat	ional		
3	Zooplan	kton Methoo	lology, Collection & Identification – - a field manua	al, S.C Gos	swami,		
Defe							
Refe		unto C. Non	di 6 1/ (2011) Int I Dec Diel Cei / (1):1 / 2				
	ROY, R. GI	upta, S., Nan	ul, S. K. (2018) IIIL J. Res. Blol. Sci. 6 (1):1-6 2.		- 0 (40)		
2		E. MI., Fathib 1015	i, K. and Ambalaparambil, V. S. (2017) Int. J. Recel	nt Sci. Re	s. 8 (10) : available		
	20777-Z	1013;	repeate not (nublication (2010) E4/(Indian French		avaliable		
		//www.resea	A Deview list Decent Col Dec 040 un 200 00	I_			
	_vvater_2	ooplankton_	_A_keview_int_J_kecent_Sci_kes_810_pp_209.99	-21015			

VALUE ADDED 1: ENVIRONMENTAL STUDIES

Cou	rse code	1FA	Environmental Studies		L	т	Ρ	с
Valu	e Added	1	Value Added 1		2			
Pre-	requisite		Understanding in Environment	Syllab	bus Version 202			
Cou	rse Objec	tives:						
The	main obje	ectives of th	is course are to:					
1. E	1. Evolve into ecologically informed and socially responsible citizens who are empowered to protect the natural resources while ensuring sustainable lifestyle and developmental mode							
Expe	ected Cou	rse Outcom	es:					
On t	he succes	sful comple	tion of the course, student will be able to:					
1	Gaining in-depth knowledge on natural processes that sustain life					K	1, K2	
2	Predicting the consequences of human actions on the web of life, global						K1, K2	
3	Develop	y, and quair	y of numarine.					
5	Develop critical trinking for environmental protection and conservation					K		
4	econom	ic-social cha	values and attitudes towards understanding environmental- K1, i ocial challenges.					
5	Adoptin	g sustainabi	lity as a practice in life, society, and industry.			К	1, K2	
K1 -	Rememb	er; K2 - Und	erstand; K3 - Apply; K4 - Analyse; K5 - Evalua	te; K6 - (Create	9		
Unit	:1 Mult	idisciplinary	v nature of environmental studies			3	lour	S
	a b b b b b b b b b b						<u> </u>	
Unit	:2 Natu	Iral Resourc	es			41	Hour	S
11	·2 Faaa							
Unit	:3 ECOS	ystems				3	Hour	5
United Diadiversity and its concernation					21	Jour	<u> </u>	
						31	ioui	5
Unit	:5 Envi	ronmental F	ollution			31	3 Hours	
	I					1		
Unit	:6 Cont	emporary l	ssues			2	lour	s

Cas	se Study, Expert Lectures, Online Seminars –Webinars					
	Total Lecture Hours	18 Hours				
Textbook(s)						
1	1 Erach Barucha, Textbook for Environmental Studies, UGC					
2	2 Dr. Radha (2019), Environmental Studies, Revised Edition Prasanna Publishers					
Ref	erence Books					
1	Dharmendra S. Sengar, (2007) 'Environmental law', Prentice hall of India					
ر د	G. Tyler Miller and Scott E. Spoolman, (2014) "Environmental Science", Cengage Learning					
Z	India					
3	Rajagopalan, R, (2005) 'Environmental Studies-From Crisis to Cure', Oxford Unive	ersity Press,				
Λ	Benny Joseph, (2006) 'Environmental Science and Engineering', Tata McGraw-Hil	l, New				
4	Delhi,					
5	Gilbert M. Masters, (2004) 'Introduction to Environmental Engineering and Scien	ce', 2nd				
5	edition, Pearson Education,					
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]					
1	Environmental Studies - By Dr. Tushar Banerjee Devi Ahilya Viswavidyalaya, Ind	ore -				
1	SWAYAM					
Cοι	urse Designed By: Bharathiar University					

SEMESTER II

Course code	MTH201	Maths-2	4 Cre	dits
Core/Elective	/SRS	CORE PAPER		
	/ 303		Syllabus Version	2023-24
Unit-1: Analys	sis			
Limits of real-	valued funct	ions		
Proving limits	using the de	finition		
Continuity & c	lifferentiabil	ity		
Examples of d standard func inverses	ifferentiable tions includi	and non-differentiable functions; continuity and ng polynomials, trigonometric, exponential, log fu	differentia unctions ar	ability of nd their
Techniques fo theorem	r evaluating	limits including L'Hopital'srule, sandwich		
Mean Value T	heorem and	applications		
Applications o	of differential	calculus eg. related rates		
Unit-2: Comp	lex Numbers	i		
Complex num	bers			
Review of con	nplex numbe	rs including algebra, Arg and plane, cartesian		
And polar forr	n			
Complex expo	onential			
Fundamental	Theorem of <i>J</i>	Algebra		
deMoivre's th	eorem; root	s of complex numbers		
Unit-3: Vector	rs atta datuma	duct vertex and estimation (vertical)		
Vector arithm	etic, dot pro	duct, vector projections (review)	voctor og	untions
Lines and plan	nouuct, scale	ar triple product, para metric curves specified by	vector equ	Iduons
Lines and plan	nes in R^3			
Unit-4:Linear	Algebra1			
Solving systen	ns of linear e	quations with Gaussian elimination		
Solutions of sy	stems of line	ear equations - consistency, uniqueness		
Geometric int	erpretation of	of solutions		
Matrices, matr	rixaddition,m	nuitiplication, transpose and properties (review)		
Determinant	-			

Rⁿ as a vector space, linear independence of vectors in Rⁿ Span of a set of vectors, sub spaces of Rⁿ

Unit-5:Linear Algebra 1A

Basis and dimension in Rⁿ

Abstract vector space axioms; examples and non-examples of vector spaces Bases, dimension and co-ordinatesin (finite dimensonal) abstract vector spaces Definition of linear transformation and examples/non-examples Linear transformations of the plane Matrix representation of a linear transformation Image and kernel of a linear transformation Rank and nullity

Reference Books

Calculus: Early Transcendentals, Seventh edition by James Stewart. Publisher: Brooks/Cole Year: 2010; ISBN: 9780538497909 (Hardcover), 1170 pp

Complex Variables and Applications by James Brown, Ruel Churchill. Publisher: McGraw Hill Higher Education; Year: 2013; ISBN-13: 978-0073383170, 480 pp.

Vector Calculus by Susan Colley. Publisher: Pearson; Year: 2011; ISBN-13: 978-0321780652, 624 pp.

Linear Algebra And Its Applications by Gilbert Strang. Publisher: Cengage India Private Limited; Year: 2005; ISBN-13:978-8131501726; 544 pp.

Course code	e PHY201	Physics 2: Modern Physics	4 Cre	edits			
Core/Electiv	e/SBS	CORE PAPER					
			Syllabus Version	2023-24			
Unit:1		Electricity					
Electric charge, conductors and insulators – Coulomb's Law, superposition principle – Electric field, superposition principle – Electric flux – Gauss's law, applications – Energy and electric field; electric potential – Calculating potential from the field, electric potential, potential energy surfaces – Electric dipoles – Capacitance; parallel plate capacitors – Energy storage in capacitors, dielectrics, series and parallel circuits – Conductors, electric current, electric power, Ohm's law – Kirchoff's rules, resistors in series and parallel circuits.							
11.:4.0							
Unit:2		Magnetism					
Magnetic fie Savart Law, forces on cu Faraday's lay	Id, magnetic f Ampere's Law urrent – carry v, Maxwell's e	force, Lorentz force, cyclotrons – ion velocity filte y, solenoids, earth's magnetic field - Magnetic fie ying wires, Electromagnetic induction, magnetic equations, applications – Magnetic materials.	er, Hall effe Id due to a c flux – Le	ect, - Bio- a current, enz' Law,			
Unit:3		Oscillations and Waves					
Damped har dimensional Intensity, so waves.	rmonic motio waves, Interf und level and	n, resonance – electronic circuits, evolution of erence and standing waves, Sound waves and t the physics of music – Doppler effect and super	populatio he speed sonic moti	ns – One of sound, on, shock			
Unit:4		Optics					
Images and Thin films ar by grating sa	mirrors – Thin Id the Michae Ind X-ray diffr	lenses and optical instruments – Young's experin lson interferometer – Diffraction by slits and aper action – Optical Microscopy – Spectroscopy.	nent, inter tures – Dif	ference – fraction			
Unit:5		Modern Physics					
Challenges t velocities, D effect – Qua tunneling pa Big Bang.	o classical ph oppler effect - antum physic rticles – Nucle	ysics; special relativity – Lorentz transformation - Relativistic momentum and energy – Photons ar s, black body radiator, matter waves – Trappe ear physics, nuclear properties, nuclear decay – C	, transforr nd the pho d particles Quarks, Lep	mation of toelectric and the otons, The			
Textbook(s)							
1 A Text	book of Optic	s, Brijlal & Subramaniam.S. Chand Limited (2001)					
2 Moder	n Physics, R. N	Aurugesan, S. Chand Publishing, 18thEdition (201	7)				
3 Solid S	tate Physics G	upta and Kumar,K. Nath & Co.(2018)	_ ·				
4 Electric	ity and Magn	etism R Murugesan S Chand & Co(2017)					

Refe	rence Books
1	Optics and Spectroscopy,RMurugesan,S.ChandPublishing,5 th Edition(2013)
2	Heat and Thermodynamics–Zemansky and R.H.Dcltanann,TMH(2017)
3	Modern Physics, Sehgal D.L. ChopraK.L.andSehgalN.K.SultanChand&Sons,9 th edition, (2004)
4	Introduction to Solid State Physics Charles Kittel, Wiley(2019)
5	Electricity and Magnetism, D.N.Vasudeva, S.Chand & Co, twelfth edition(2007)
Rela	ted Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.,]
1	https://www.askiitians.com/revision-notes/physics/current-electricity.html
2	https://www.askiitians.com/revision-notes/physics/electromagnetic-
	induction-and-alternating-current/
3	https://www.khanacademy.org/science/physics/light-waves/introduction-to-light-
	waves/v/polarization-of-light-linear-and-circular
4	https://nptel.ac.in/courses/115/105/115105099/

Cou	rse Code	CHM201	PHYSICAL AND INORGANIC CHEMISTRY	4 Credits			
	C	ORE	Chemistry 2				
				Syllabu Versior	s 2023- n 2024		
	UNIT I		Chemistry of Life				
The and Anal	Chemical Catalysed polism - C	l Basis of Life - E d Reactions - Th Concatenation a	Bioenergetics - Examples of Major Bioenerge e Chemistry Behind Enzyme Catalysis - Meta nd Biopolymers - Stereochemistry and Biom	etic Proces abolism: C olecular C	sses - Enzymes Catabolism and Chirality		
ι	JNIT II	Bioch	emistry & Inorganic Chemistry				
Bioc Bion	hemistry nolecules	and Biomolecu - Small Inorgan	lar Structure - Types of Biomolecules, Stru ic Molecules of Biological Importance	cture and	Functions of		
Ionio Solu	Compo tions - St	unds and their ructures of Solic	Solutions - Formation, Bonding, Structure ls - Classification of Solids - Types of Crystall	and Prop ine Solids	perties - Ionic		
ι		II	norganic Chemistry & Electrochemistry				
Maiı Elem	n Group (nents, Str	Chemistry - Gen ucture, Chemica	eral Trends in Main Group Chemistry - Che al Reactivity and Bonding Concepts	mistry of	s- and p-block		
Redo Elect	ox Reacti trochemi	ons and Electro cal Series - Elect	chemistry - the Basics of Redox Reactions rode and Cell potentials - Nernst equation	- Electroo	chemical Cell -		
L		Inor	ganic Chemistry				
The Coor Tran Mole	Transition rdination isition M ecules	on Metals : A Compounds - Ietals in Bioloş	Survey - Coordination Chemistry - Imp Bonding in Complex Ions - Types of Co gical Systems - Simple Harmonic Motion	ortant Te ordination n, Pendul	erms Involving 1 Complexes - lum, Diatomic		
ι	JNIT V		Quantum Chemistry				
Schr the Sele	Schrödinger's Equation and Heisenberg's Uncertainty Principle - Bohr and Schrodinger Models of the Hydrogen Atom - Complex Atoms; Pauli Exclusion Principle, Periodic Table of Elements, Selection Rules and Spectra - Nuclear Fission and Fusion						
Те	xt Book(s)					
1	Textboo	k of Biochemist	ry, Seema P. Upadhye, I.K. International Pub	lishing Ho	ouse Pvt. Ltd.		
2	Inorgani	c Chemistry, P.	L. Soni, Sultan Chand & Sons.				
3	Principle	es of Physical Ch	emistry, B.R. Puri, L.R. Sharma, S.Chand& Co	Э.			

4	Main Group Chemistry, 2nd Edition, A. G. Massey, Wiley Publication
Refe	erence Books
1	Bioenergetics: Molecular Biology, Biochemistry, and Pathology, Chong H. Kim, Takayuki Ozawa, Springer Publication
2	Essentials of Physical Chemistry, B.S. Bahl and G.D. Tuli, S.Chand & Co.
3	Principles of Inorganic Chemistry, B.R. Puri L.R. Sharma, S.Chand& Co.
4	Fundamentals of Biochemistry, J L Jain, Nitin Jain, Sunjay Jain, S.Chand & Co.
Relat	ed Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://chem.libretexts.org/
2	https://byjus.com/chemistry/
3	https://openstax.org/details/books/chemistry-2e

Cou	rse code	BIO201	Biology 2: The Biology of Cells	4 Cre	edits			
Core/Elective/SBS			CORE PAPER					
				Syllabus Version 2023-2				
Uni	t:1		The Cell					
Introduction to Cell Biology – The plasma membrane – Cell walls, extracellular matrix, cellulose synthesis, other cell wall components – Cytoplasm: content, chemistry and properties – Cytoskeleton, actin filaments, microtubules								
Uni	t:2		Information Flow in the Cell					
Nucl	eus, chroi	nosomes, D	NA – Genes and the genetic code – Control of ger	ne express	ion			
Uni	t:3	Endome	mbrane system and Intracellular Trafficking					
ER al Lysos	nd riboso somes	me, protein	s and enzymes – Golgi apparatus –Vesicles, trans	sport and s	secretion,			
Uni	t:4		Harvesting Energy					
Mito Chlo	chondria, roplasts, p	ATP, energe photosynthe	etic reactions, electron transport pathways, cellul sis, historical experiments, pigments, photo syste	ar respirat ems	ion -			
Uni	t:5		Multicellularity and the Dividing Cell					
Cell form diffe	division, of l ation of l rentiation	cell cycle, m naploid cells and multice	itosis, cytokinesis, division and distribution of or – Communication and signaling, recognizing an ellularity.	rganelles - d respond	· Meiosis, ing – Cell			
1	Molecula	r cell biolog	v. Harvey Lodish. 8 th edition. W.H. Freeman. (2010	6).				
2	Cell and Marshall	Molecular B ,9thEdition,	iology concepts and Experiments, Gerald Karp, Ja Wiley(2019)	anet Iwasa	, Wallace			
3	Molecula	ar Biology of	the cell, Bruce Alberts, 6^{m} edition, Garland Science	ce(2014)				
Refe	rence Boo	oks						
1	The Cell : Sinauer <u>(</u> 2	A molecular 2013)	approach, Geoffrey M. Cooper, Robert E. Hausm	an, Sixth e	dition,			
2	Essential	Cell Biology	, Bruce Alberts, 5 th edition, Garland Science (2019	?).				
3	Jones, Ba	Genes XII, 20 artlett Publis	hers, 12th revised edition	onen I. Kilp	Datrick			
		<u> </u>						
Kela 1	https://	e Contents nicrobenate	MOOC, SWAYAM, NPTEL, Websites etc.,]					
2	https://	www.larher	thigh.com/ documents/%5B1405%5DUnit 1-					
	_Cell_bi	ology_summ	nary_notes.pdf					

3 https://r	ptel.ac.in/co	urses/102/103/102103012/					
4 https://	www.khana	cademy.org/science/ap-biology/cell-structure-a	nd-functio	n			
	1						
Course code	PHY202	PHYSICS PRACTICAL 2	2 Cre	edits			
Core/Elective	e/SBS	CORE PRACTICAL					
			Syllabus Version				
LIST OF EXPE	RIMENTS:						
1. Young	g's Modulus -	Non-uniform pending methods					
2. Deter	mination of t	he radius of a current carrying coil 2-Determinatic	on of magr	netic field			
with the varia	ation of dista	nce along the axis of current carrying coil.					
3. To de	termine the	Wavelength of main spectral line of mercury light	using plar	ie			
transmission	grating.						
4. To de	termine the F	Refracting Angle, Refractive Index and Dispersive p	power of p	rism			
using spectro	meter.						
5. To de	termine the o	coefficient of thermal Conductivity of bad conduct	or by Lee's	s Disc.			
6. Charg	ging and Discl	harging of Capacitor.					
7. Verifie	cation of Kirc	hhoff's law.					
Reference Bo	ooks						
1 A text	book of prac	tical Physics, M.N.Srinivasan, S.Balasubramanian.	R.Rangan	athan.			
Sultan			0	,			
Chano	& Sons(201)	7).					
2 Practi	cal Physics ar	nd Electronics, C.C. Ouseph, U.J.Rao, V.Vijayendra	n, S.Viswa	nathan			
Publishers(20	07)						
•							
Related Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]					
https://nptel	.ac.in/course	.html/physics/experimentalphysicsl,llandlll					
https://nptel	.ac.in/course	s/115/105/115105110/					
https://www	.youtube.com	n/playlist?list=PLuiPz6iU5SQ8-rZn_LgLofRX7n8z4tl	НҮК				

Course Code	CHM202	CHEMISTRY PRACTICAL 2		2 Cre	dits
Core/	Elective/SBS	CORE PRACTICAL			
			Syllab	us	2023-24
			Versio	on	
		List of Experiments	•		•

List of Physical chemistry experiments (Any 2)

- 1. To determine the rate of chemical reaction by using hydrolysis of tert-Butyl chloride.
- 2. Effects of catalase enzyme obtained from potato in cleaving H_2O_2 into H_2O and O_2 .
- 3. To measure the vapour pressure of n-Pantane by using high vacuum line.
- 4. Heat of solution of KNO_3/ NH_4CI .
- 5. Glass electrode- Buffer solutions: To titrate a weak base (Na₂CO₃) with a strong acid a) an acid-base indicator,(b) a glass electrode

List of Inorganic chemistry experiments (Any 2)

- 1. Synthesis of hexamine nickel (II) $[Ni(NH_3)_6]I_2$
- 2. Cuprous Chloride, Cu₂Cl₂
- 3. The transition metals: a survey (Transition metals in biological systems and Bonding in complex ions).
- 4. Estimation of Cu (II) and K₂Cr₂O₇ using sodium thiosulphate solution (Iodometrically).
- 5. Estimation of available chlorine in bleaching powder iodometrically.

List of Organic chemistry experiments (Any 3 in Each Group)

1. Preparation of Derivatives:

Oxime, 2, 4-DNP, Acetyl, Benzoyl, Semicarbazone, Anilide, Amide, Aryloxyacetic acid.

2. Organic single stage preparation:

The preparation of paracetamol.

The synthesis of meso-1,2-Dihydroxy-1,2-Diphenylethane.

Preparation of q-phenyl Cinnamic acid from Benzaldehyde.

Preparation of benzyl alcohol from Benzaldehyde

Preparation glucose pentaacetate from Glucose.

Preparation of 2-iodobenzoic acid from Anthranilic acid.

Use of Computer (Chemistry Software)

Chem Draw-Sketch, ISI – Draw, Draw the structure of simple aliphatic, aromatic, heterocyclic organic compounds with substituents. Get the correct IUPAC name.

Text Book(s)

1

Basic Principles of Practical Chemistry, Kulandaivelu A.R., Veeraswamy

R., Venkateswaran, Sultan Chand & Sons, 2017

2	Practical Chemistry for B.Sc Chemistry, A.O. Thomas
3	Practical Chemistry, Pandey D.N., Sultan Chand Publishers, 2018
4	https://www.freebookcentre.net/chemistry-books-download/Chemistry-Laboratory- Manual-by-CSOS.html
Refe	erence
1	Vogel's Text book of Practical Organic Chemistry, Brian S. Furniss, Antony J.Hannaford, Peter W. G. Smith, Fifth Edition, Bath Press, Great Britan, 1989
2	Vogel's Textbook of Quantitative Chemical Analysis, G H Jeffery, J Bassett, JMendham, R
	C Denney, Fifth Edition, Bath Press, Great Britan, 1989
3	ChemDraw 17.0 User Guide, PerkinElmer Informatics Inc, 1998-2017

C οι	ırse code	BIO202	BIOLOGY PRACTICAL 2	2 Credits		edits		
Core	e/Elective	/SBS	CORE PRACTICAL					
				Sy Ve	llabus ersion	2023-24		
			List of Experiments					
1. Microscopy and observation recording of representative organelle readymade specimens.								
2. Staining of cell for observations of-Flagella, cell wall, endospores, etc.								
a. Plant cell, bacterial, fungi samples.								
b. Malachite green, safranin, Leifson flagella stain/RYU flagella stain, nitric								
acid, crystals of potassium chlorate (any suitable stain)								
3.	Introduc	ction and vis	ualization DNA-Proteins insilico.					
4.	Demons facility c	stration of co of Bharathiar	onfocal/ fluorescence microscopy at the central ins [.] University.	stru	imenta	ation		
5.	Countin	g of cells usi	ng hemocytometer, observation of dead cells-Tryp	ban	blue s	taining.		
6.	Isolatior	n of DNA: gel	l electrophoresis.					
7.	Mitosis	in onion roo	t tips – Microscopic observation					
Text	Book(s)					" (0005)		
1	Wilson	no, James G. K. and Walke	, and Natalle Sherman. Microbiology: a laborator	y n ictr	nanuai wand	." (2005) Molecular		
2	Biology.	7th Edition.	Cambridge University Press.	1511	y anu i	Molecular		
3	 Tiwari, G. S. Hoondal, (2005). Laboratory Techniques In Microbiology & Biotechnology. Swastik publishers 							
Refe	erence	· · ·						
	Sri Jayach	nama rajendi	ra (2018)/ pdf. Cell Biology and Genetics Lab.					
2	K. R. Ane	eia: Laborato	ory Manual of Microbiology and Biotechnology, 20	18.	ED-TE	CH		

Course code	IDC201	Scientific Computation and Modeling: Introduction to simple models and programming		4 Cre	edits	;
Core		CORE PAPER				
Pre-requis	site		Syllabus Version		202	22-23

Unit 1: Introduction to Scientific Computing

Overview: Definition; Scope; Importance, Mathematical Foundation: Numerical Representation; Basic Linear Algebra, Programming Basics: Introduction; Variable; Data Types; Basic Operations; Control Structures.

Unit 2: Numerical Methods

Root Finding and Optimization: Bisection Method; Newton-Rhapson Method, Linear Systems: Gaussian Elimination; LU decomposition, Interpolation and Approximation: Lagrange interpolation; Polynomial interpolation; Least squares approximation.

Unit 3: Differential Equations

Ordinary Differential Equations (ODEs): Euler's method; Runge-Kutta methods, Partial Differential Equations (PDEs): Classification; Finite difference methods, Applications of ODEs and PDEs: Physical systems modeling; Heat equation, wave equation, and diffusion equation.

Unit 4: Data Analysis and Visualization

Data Manipulation and Analysis: Introduction to data structures; Statistical analysis using computational tools, Visualization Techniques: Plotting and graphing data; 2D and 3D visualization.

Unit 5: Advanced Topics in Scientific Computing

Parallel and High-Performance Computing: Introduction to parallel computing; Parallel algorithms and architectures; High-performance computing clusters, Machine Learning for Scientific Modeling: Basics of machine learning; Applications of machine learning, Advanced Topics in Modeling: Agent-based modeling.

Text Book(s)

Scientific Computing: An Introductory Survey" by Michael T. Heath. This book provides an overview of scientific computing, including numerical methods and algorithms, and discusses their implementation using various programming languages.

"Python for Scientists" by John M. Stewart. This book is specifically designed for scientists and engineers, providing an introduction to Python programming and its application in scientific computing.

VALUE ADDED 2: HUMAN RIGHTS

Cou	ırse code	2FB	Human Rights		L	т	Р	с		
Valu	ie Added		Value Added 2		2	-	-	2		
Pre-	requisite		Awareness on Ethics and Values	Syllabi	us Ve	rsion	rsion 2023- 24			
Cou	rse Object	tives:								
The	main obje	ctives of th	is course are to:							
1. (Create aw	areness, co	privietion and commitment to values for imp	proving	the	quality	of	life		
	unrougn eo	aucation, ar	id for advancing social and human wellbeing							
Ехре	ected Cou	rse Outcom	es:							
On t	he succes	sful comple	tion of the course, student will be able to:							
1 Understand human values and value education							K1			
2 Learn their role in national development					K1					
3 Understand global development with ethics and values						K1				
4 Learn various therapeutic methods						K1				
5 Learn and understand human rights							K1			
K1 -	Remembe	er; K2 - Und	erstand; K3 - Apply; K4 - Analyse; K5 - Evaluat	e; K6 - (Create	e				
	Cana	ant of lluna	on Values Value Education Towards Deveous							
Unit	:1	ept of Hum Ionment	an values, value Education Towards Persona	11		31	lour	s		
Aim	of educat	tion and val	ue education: Evolution of value-oriented edu	cation:	Conc	ept of	Hum	ian		
valu	es; types o	of values; Co	omponents of value education. Personal Deve	lopmer	nt: Se	f-analy	/sis a	nd		
intro	ospection;	sensitizat	ion towards gender equality, physically	challen	iged,	intelle	ectua	ally		
chal	lenged. R	espect to -	age, experience, maturity, family members	, neigh	bours	s, co-w	/orke	ers.		
Cha	racter Fo	rmation To	owards Positive Personality: Truthfulness,	Const	ructiv	ity, Sa	acrifi	ce,		
Sinc	erity, Self-	Control, Alt	ruism, Tolerance, Scientific Vision.							
Unit	:2 Valu	e Education	Towards National and Global Development			4	lour	S		
Nat	ional and	Internation	hal Values: Constitutional or national values	s - Der	nocra	ICY, SO		m,		
sect	tral unive	uality, justi	ce, liberty, freedom, and fraternity. Social Val	ues - Pri	ty and ority	i propr	ty, se focciu	317- on		
rogi	iloi, unive ilority pu	nctuality a	nd faith Religious Values - Tolerance wisc	dom d	enty barac	tor Ac	essio	JII,		
valu	es - Love	and appre	ciation of literature and fine arts and respe	ct for t	he s	ame N	.stric	nal		
Inte	gration an	d internatio	and understanding.		ine se		ation			
Unit	:3 Impa	ct of Globa	l Development on Ethics and Values			31	lour	S		
Con	flict of cr	oss-cultural	influences, mass media, cross-border educa	ation, n	nater	ialistic	valu	es,		
prof	essional o	challenges,	and compromise. Modern Challenges of A	Adolesc	ent l	Emotio	ns a	nd		
beh	behaviour; Sex and spirituality: Comparison and competition; positive and negative thoughts.									

Unit:4 Therapeutic Measures	3 Hours						
Control of the mind through a. Simplified physical exercise b. Meditation - Object	tives, types,						
effect on body, mind and soul c. Yoga - Objectives, Types, Asanas d. Activities: (i)Mo	ralisation of						
Desires (ii)Neutralisation of Anger (iii)Eradication of Worries (iv)Benefits of Blessings							
Unit:5 Human Rights	3 Hours						
Concept of Human Rights – Indian and International Perspectives a. Evolution of Human Rights b.							
Definitions under Indian and International documents 2. Broad classification of Human Rights and							
Relevant Constitutional Provisions. a. Right to Life, Liberty and Dignity b. Right to Equa	ality c. Right						
against Exploitation d. Cultural and Educational Rights e. Economic Rights f. Politic	cal Rights g.						
Social Rights 3.Human Rights of Women and Children a. Social Practice and Co	onstitutional						
Safeguards (i)Female Foeticide and Infanticide (ii)Physical assault and harassment ((iii)Domestic						
violence (iv)Conditions of Working Women 4.Institutions for Implementation a. Hu	uman Rights						
Commission b. Judiciary 5. Violations and Redressal a. Violation by State b. Violation by	y Individuals						
c. Nuclear Weapons and terrorism d. Safeguards.							
Unit:6 Contemporary Issues	2 Hours						
Case Study, Expert Lectures, Online Seminars - Webinars							
Total Lecture Hours	18 Hours						
Textbook(s)							
1 Value Education – Human Rights, Bharathiar University							
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1 Human Rights in India - By Prof. (Dr.) Y.S.R. Murthy O.P. Jindal Global University	- SWAYAM						
Course Designed By: Bharathiar University							

		Semester III		
Course code	MTH301	Maths-3: Vector Calculus and Differential Equations	4 Credits	
Core/Electi	ve/SBS	CORE PAPER		
			Syllabus Version	2023-24
Linear Algeb	ora			
Change of ba	asis and linea	ar transformations		
Definition of	eigenvector	s and eigenvalues		
Calculating e	eigen values a	and eigenvectors		
Diagonalisat	ion of matric	es; matrix powers		
Orthogonal	matrices, rea	l symmetric matrices		
Characterist	ic and minim	al polynomial, Cayley-Hamilton Theorem		
Applications	of eigen vec	tors/diagonalisationeg Markov chains		
Inner produ	ct axioms; ex	amples/non-examples of inner products		
Length, angl	e, Cauchy-Sc	hwarz inequality in terms of inner product		
Orthogonali	ty, projectior	ns in terms of inner product		
Gram-Schmi	dt algorithm			
Vector Calcı	ılus			
Functions of	several varia	ables; level curves and cross sections of		
surfaces				
Common su	rfaces includ	ing paraboloid, ellipsoid, hyperboloid		
Domains and	d ranges of fu	unctions of several variables		
Limits and co	ontinuity of f	unctions of several variables; Definition of		
C^N				
Partial derivation	atives, tange	nt plane		
Differentiabi	ility of function	ons of several variables		
Directional c	lerivative, gr	adient		
Chain rule ai	nd total deri	vative		
Stationary p	oints of surfa	ces, classification of stationary points using		
Second deri	vatives			
Optimisatior	n application	5		
Constrained	extreme a u	sing Lagrange multiplier method		
Double integ	grals, changir	ng order of integration		
Polar co-ord	inates, chan	ge of variables for double integrals		
Triple integr	als			
Change of va	ariables for t	iple integrals; cylindrical co-ordinates		
Spherical co	-ordinates			
Vector fields	s, div and cur	l operators		

Parameterisation of paths

Line integrals of scalar functions

Line integrals of vector functions

Integrals of scalar functions over surfaces, applications of surface

Integrals eg. surface area, mass

Integrals of vector functions over surfaces, flux

Green's Theorem

Gauss Divergence Theorem

Stokes' Theorem

Applications of integral theorems eg. Maxwell's equations

PDEs

Fourier Series

Fourier series: Dirichlet, discontinuities and differentiation

Fourier series: Weak convergence and series summation

Linearity and Superposition

Laplace equation and harmonic functions

Fourier transform

Fourier transform: properties

Course code	PHY301	Physics-3: Quantum Mechanics and Thermodynamics	4 Credits		
----------------	--------	--	-----------		
Core/Elective/SBS	CORE PAPER				
------------------------------	---	-------------	----------------	-----	------
		Syll Ver	labus rsion	202	3-24
Linear Algebra			•		
Change of basis and linea	r transformations				
Definition of eigenvector	s and eigen values				
Calculating eigen values a	and eigenvectors				
Diagonalisation of matric	es; matrix powers				
Orthogonal matrices, rea	l symmetric matrices				
Characteristic and minim	al polynomial, Cayley-Hamilton Theorem				
Applications of eigen vec	tors/diagonalisationeg Markov chains				
Inner product axioms; ex	amples/non-examples of inner products				
Length, angle, Cauchy-Sc	nwarz inequality in terms of inner product				
Orthogonality, projectior	s in terms of inner product				
Gram-Schmidt algorithm					
Quantum Mechanics					
The Breakdown of Classic	al Physics				
Matter Waves and Quant	um Interpretation				
Quantum Mechanics in C	ne Dimension				
Expectation Values, Obse	rvables and Operators				
Tunneling Phenomena					
Quantum Mechanics in 3	-dimensions				
Hydrogen atom, hydroge	nic ions, helium atom				
Hydrogen molecule ion, I	nydrogen molecule				
Thermodynamics					
Temperature and the Zer	oth Law of Thermodynamics. Thermal				
equilibrium.					
Transport, conduction, co	onductivity, diffusion in gases.				
The two-state paramagne	et and the Einstein model of a solid; quantum				
Deviations from classical	equipartition. Partition function, Interacting syst	ems,	large		
systems, Stirling's approx	imation				
Heatengines, Carnot Cycl	e, Otto Cycle, Stirling Cycle.				
PDEs					
Fourier Series					
Fourier series: Dirichlet, o	liscontinuities and differentiation				
Fourier series: Weak con	vergence and series summation				
Linearity and Superpositi	on				
Laplace equation and har	monic functions				

Fourier transform

Fourier transform: properties

Course code	CHM303	Chemistry-3 Reactions and Synthesis	4 Credits
Core/Elect	tive/SBS	CORE PAPER	

		Syllabus Version	2023-24
Unit:1	Organic Synthesis	0	98 L

C-C bond Forming Reactions: Grignard Reagents and Organolithiums. Formation and reaction with Carbonyl compounds.

Organometallic Reagents in Synthesis: Applications of Organocerium and Organocuprate reagents.

Carbonyl Compounds and Reactions: Carbonyl compounds, Tautomerism as a general phenomen, keto-enoltautomerism of carbonyl compounds, mechanism of keto-enoltautomerism - Generating enolate anions, suitable base catalysts for enolising aldehydes, ketones, and ester and β -dicarbonyl compounds, general α - Substitution reaction. Reactions of enols and enolates, α -substitution with H/D⁺Stereochemical consequences and deuterium incorporation, Halogenation of carbonyl compounds. The haloform reaction, Halogenation of carbonyls, Hell-Volhard-Zelinsky reaction, Synthetic applications of a-halocarbonyl compounds. Alkylation of enolates, LDA, scope and limitations.Aldol reaction, mechanism and retro synthesis, inter-and-intra-Molecular variants, mixed Aldol reaction. Claisen reaction, mechanism and retro synthesis, mixed Claisen and Deickman reaction. MalonateDiester Chemistry, Acetoacetate chemistry, Synthesis of Substituted acetic acid and acetone derivatives, Scope, Mechanism and Retro synthesis. Michael addition Chemistry, reaction of enolates with various Michael electrophiles. Kinetic and Thermo dynamic enolates, Enamines and silylenol ethers

Redox (and important acid-base) Reactions:

08 L

Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation.

Thermodynamic vs. kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems. (Electrides and sodides).

Oxidation of metals by protons etc. and generation of aqua ions. Comparison of TM and main group systems and hydrolysis in TM aqua ions (acid-base chemistry of coordinated water-

hydroxide-oxo ligands).Connection between electrochemical and thermo dynamic parameters. Construction and uses of Latimer and Frost diagrams. Interpretations of Frost diagrams exemplified by the more complex chemistry of main group elements, such as nitrogen.

Thermodynamic content of plots (free energy of formation vs. oxidation state) and predictive power. Nernst equation revisited and construction and uses of Pourbaix diagrams combining redox and acid base reactions. Comparison of chemistry of representative elements as reflected in Pourbaix diagrams.

Unit:3	Exchange reactions	06 L

Solid/gas phase systems exemplified by transport reactions and preparation of solid-state materials, in volcanology, halogen lamps etc. Solution examples of doubled composition (metathesis).Solubility trends, Common ion effect.

Hard/soft acid/base theory. Thermodynamic basis for HSAB theory. Usefulness in predicting direction of equilibrium and solubility.

Unit:4	Substitution Reactions	06 L

Typical reactions and synthetic applications and examples. Inert and labile complexes. Stability (K,b) and factors affecting stability (metals, ligands). Irving-Williams series, Chelate effect. Applications of chelate effect. Siderophores. Antioxidants, garden products, chelation therapy in medicine.

Mechanism of substitution reactions. Square planar Pt complexes and applications. Trans effect, Pt chemistry, Applications in synthesis of action of chemotherapeutic agents.

Dissociative, interchange and associative mechanisms in substitution, racemization *etc*in octahedral complexes.

Combination of substitution and redox chemistry in TM systems.

Co(III) syntheses, Cr(II) catalysed substitution. Electron transfer, inner-and outer-sphere reactions.

Metal centered reactions: Template reactions and reactions of coordinated ligands. Atom

transfer reactions (redox reactions). Metal directed ligand syntheses

Ideal gases, the kinetic theory of gases, equipartition theory, Boltzmann distribution, Heat, work, internal energy. First law of thermo dynamics. Heat Capacity and enthalpy. Compression of an ideal gas under various conditions. Latent heats, Multiplicity and ideal gases. Entropy, spontaneous change and the Second Law of Thermodynamics. Interacting ideal gases and the entropy of mixing. Gibbs Free energy and spontaneity, Helmholtz Free energy, standard free energies, free energy as a function of pressure and temperature.

The Fundamental equation, properties of internal energy and Maxwell's relations. Thermodynamics criteria for chemical and phase equilibria, chemical potential and partial molar quantities, the Gibbs Free Energy, minimum and equilibrium, extent of reaction and equilibrium constant, molecular description of equilibrium, response of equilibria to temperature.

Thermodynamics of liquids and liquid mixtures, chemical potentials of liquids, ideal liquid mixtures and Raoult's Law, Henry's Law, vapor pressure diagrams, liquid-liquid phase diagrams, Free energy and entropy of mixing, excess functions and real solutions, solute and Solvent activity, activity coefficient, osmotic pressure

	Student Work	
•	Assignments, Tutorials	
•	Reviews of various research papers, reports, books	09 L
•	Presentations	
Rec	ommended Books/references	
1	OrganicChemistryby J. McMurray, 7th Ed., Thomson, 2008.	
2	Carey, F. A. and Sundberg, R. J., "Advanced Organic Chemistry, Part B: R	eactions and
	Synthesis", 5 th Ed., Springer.	
3	PrinciplesofOrganicSynthesisby R. Norman and J.M. Coxon, 3rd Ed., Chap	man and Hall,
	1993.	
4	Organic Chemistry by Clayden, J., Greeves, N. and Warren, S., "Organic C	hemistry",
	Oxford University Press	

5	Smith, M.B., "Organic Synthesis", 3 rd Ed., Academic Press.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://chem.libretexts.org/

2. https://byjus.com/chemistry/

3. https://openstax.org/details/books/chemistry-2e

Course code	BIO301	BIOLOGY-3: Functional Biology of Organisms	4 Credits		;	
Core/Electi	ve/SBS	CORE PAPER				

Pre-requisite		Syllabus Version	2022-23			
Functional Biology of Or	ganisms					
Introduction to Functional Biology						
Animal biology (Humans	as an example)					
Anatomy and Function 1:	Tissues, Organs and Viscera					
Anatomy and Function 2:	Skeletal & Muscular system					
Nervous system1: The ce	ntral nervous system(CNS)and nervous					
tissues						
Nervous system2: Autono	omic nervous system and motor responses					
Endocrine system1: Endo	crine and Exocrine glands					
Endocrine system2: HPA	axis introduction					
Respiration and Metabol	ism 1:Breathingin air and water					
RespirationandMetabolis	m2:Regulationof metabolism					
Cardiovascular and circul	atorysystem1: Regulation of the circulatory					
system						
Cardiovascular and circul	atorysystem2: Peripheral circulation					
Digestive system						
Urinary and Excretion sys	tems1: Anatomy and function					
Urinary and Excretion sys	tems 2: Osmoregulation interrestrial&					
aquatic environments						
Thermal dynamics						
Immunology1: Innate imi	nune system					
Immunology2: Adaptive/	Humoral immune system					
ReproductionandDevelopment1:GonadsandtheReproductivetract						
Reproduction and Develo	pment2: Gametes, Fertilization and					
conception						
Plant biology						
Growth and Developmen	t					
Photosynthesis						
Water Balance						
Phloem and translocation						
Mineral nutrition and nutrient assimilation						
Respiration and lipid metabolism						
Reproduction						
Signaling; hormones, light responses, control of flowering						
Abiotic stress						
Secondary metabolism a	nd defense					

Microbial physiology

PHY302 - Physics Practical - 2 Credits

- 1. Michealson's interferometer: To find the wavelength of given laser beam.
- 2. Specific charge of the electron(e/m): To find the specific charge of the electron from the path of an electron beam in crossed electric and magnetic fields of variable strength.

- 3. Rydberg's constant: To find Rydberg's constant using diffraction grating.
- 4. Photoelectric effect: To estimate Planck's constant and work function of the photoelectrons by measuring the variation of stopping potential with the frequency of light. To see the graph of current Vs voltage for different intensity and frequency of light.
- 5. Electron diffraction: To measure diameter of smallest diffraction rings at different anode voltages.
- 6. Millikan soil drop experiment: To measure to charge of the electron.

CHM302 - Chemistry Practical - 2 Credits

List of Physical chemistry experiments

- 1. Thermodynamic data of electrochemical cell by e.m.f. measurements.
- 2. Determination of the equilibrium constant of tri-iodide ion formation

- 3. Determination of dipole moment f liquid at various temperatures
- 4. Dissociation constant of an acid-base indicator by spectrophotometry
- 5. Flame Photometric determination of Na, K, Li and Ca (Working curve method, standard addition method and Internal standard method)
- 6. A photometric titration of a mixture of Bi and Cu with EDTA(-745nm)
- 7. The reaction between potassium per sulphate and potassium iodide by colorimetry.
- 8. Hydrolysisconstantofanilinehydrochloridebydistributioncoefficient method.
- 9. Thermodynamic data of electrochemical cell by e.m.f. measurements.
- 10. Determination of the equilibrium constant of tri-iodide ion formation
- 11. Determination of dipole moment of liquid at various temperatures
- 12. Determination of concentration of sulfuric acid, acetic acid and copper sulphate by conduct o metric titration with sodium hydroxide.
- Determine the formula and stability constant of a metal ion complex (Lead Oxalate) by polarography.

List of Inorganic chemistry experiments

1. Analysis of ore(Any one)

- i) Pyrolusite ore -Estimation of silica gravimetrically and Manganese volumetrically.
- ii) Chromite ore-Estimation of Iron gravimetrically and Chromium volumetrically

2. Analysis of Alloy

Solder alloy- Estimation of Tin gravimetrically and Lead volumetrically

- 3. Column Chromatography: Ion exchange capacity of resine by Co and Ni.
- 4. Characterization of soil and water.

List of Organic chemistry experiments

1. Separation of Binary Mixture (8-10samples)

2. Preparations: Single Stage

- a. Ethyl benzene from acetophenone
- b. P-Nitrobenzylcyanide from Benzyl cyanide.
- c. 2,4dinitroanisolefromanisole
- d. Azo dye from Anthranilic acid
- e. Osazone from Glycose
- f_{\cdot} Cinnamic acid dibromide from Cinnamic acid
- g. Chalcone from P-chloro Benzaldehyde.

- h. Hippuric acid from Glycine
- i. 4-formyl resorcinol from Resorcinol.
- j. Adipic acid from Cyclohexanone
- k. 4,6 dimethyl coumarin from p-cresol.
- 1. Cannizzaro reaction of aromatic aldehyde.

BIO302 - Biology Practical - 2 Credits

Any 5 Experiments

- 1. Preparation of media, autoclaving and culturing of bacteria
- 2. Plating techniques

- a) Pour plate b) Streaking c) Spread plate technique
- 3. Dilution and colony counting
- 4. Bacterial Growth curve
- 5. Enzyme kinetics (effect of pH, temperature, substrate and enzyme concentration)
- 6. Estimation of glucose
- 7. Antibiotic sensitivity test: zone of inhibition

IDC301Scientific Computation and Modeling: Projects* - 2 Credits

Scientific Computing is the collection of tools, techniques, and theories required to solve on a computer mathematical models of problems in Science and Engineering.

VALUEADDED 3: YOGA FOR HUMAN EXCELLENCE (2 CREDITS)

Course code: 3FC

Total Lecture Hours 18 hours

Yoga and Physical Health

Physical Structure- Three bodies –Five limitations Simplified physical Exercises-Hand Exercises-LegExercises-BreathingExercises-Eye Exercises – Kapalapathi Matrarasanas-Massages -Acupuncture- Relaxational Yogasanas-Padmasana-Vajrasanas-Chakrasanas(Side)-Viruchasanas-Yogamuthra-Patchimothasanas -Ustrasanas -Vakkarasanasi – Salabasanas

Art of Nurturing the life force and Mind

Maintaining the youthfulness-Postponing the ageing process Sex and Spirituality-Significance of sexualvital fluid-Married life -Chastity Ten stages of Mind Mental frequency-Methods for concentration

Sublimation

Purpose and Philosophy of life Introspection-Analysis of Thought Moralization of Desires Neutralization of Anger

Human Resources development

Eradication of worries Benefits of Blessings Greatness of Friendship Individual Peace and World Peace

Law of Nature

Unified force-Cause and Effect system Purity of Thought and Deed and Genetic centre Love and Compassion Cultural Education- Fivefold Culture

Textbook(s)

- 1. Manavalakalai Yoga, Vedathiri Publications
- 2. Simplified Physical Exercises–Vethathiri Maharishi,VethathiriPublication.Yogasanas– Vethathiri Publication
- 3. Yoga for Modern Age-Vethathiri Maharishi, Vethathiri Publications

- 4. The World Order of Holistic Unity -Vethathiri Maharishi, Vethathiri -Publications
- 5. Sound health through yoga–Dr. K. Chandrasekaran.

Related Online Contents[MOOC,SWAYAM,NPTEL,Websites etc.]

1. Yoga Practices 1 -ByDr Vikas|Swami Vivekananda Yoga Anusandhana Samsthan-SWAYAM

Course Designed By: Bharathiar University

Semester IV

MTH401: Probability and Statistics – 4 Credits	
Probability	No. of Lectures
Review of probability, events, laws of probability	1

Conditional probability, independent events	1
Random variables; discrete random variables and distributions; mean,	4
variance and standard deviation of discrete random variable	1
Bernoulli trials, binomial distribution	1
Poisson distribution and Poisson process	1
Continuous random variables and distributions, probability density	1
functions, cumulative distribution function	L
Mean, variance, standard deviation, median and percentiles of a continuous	1
distribution	L
Normal distribution	1
Uniform and exponential distribution	1
Distributions of functions of a random variable	1
Sums/differences/scalar multiples of random variables, independent	
random variables, distributions of sums/differences of independent	1
random	
variables	
Central Limit Theorem	1
Normal approximation to the binomial distribution, distribution of the	1
sample mean	1
Distribution of sample proportion	1
Stochastic processes, Markov chains	1
Stochastic processes, Markov chains Limiting behaviour of Markov chains	1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics	1 1 No. of Lectures
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control	1 1 No. of Lectures 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments	1 1 No. of Lectures 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data	1 1 No. of Lectures 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart)	1 1 No. of Lectures 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric	1 1 No. of Lectures 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median,	1 1 No. of Lectures 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR)	1 1 No. of Lectures 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data	1 1 No. of Lectures 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation)	1 1 No. of Lectures 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression	1 1 No. of Lectures 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model)	1 1 No. of Lectures 1 1 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model) Sampling distributions: population vs sample, parameter vs statistic;	1 1 No. of Lectures 1 1 1 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model) Sampling distributions: population vs sample, parameter vs statistic; distribution of sample mean, proportion; standard error	1 1 No. of Lectures 1 1 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model) Sampling distributions: population vs sample, parameter vs statistic; distribution of sample mean, proportion; standard error Estimation: Confidence intervals, confidence interval for mean (using z),	1 1 No. of Lectures 1 1 1 1 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model) Sampling distributions: population vs sample, parameter vs statistic; distribution of sample mean, proportion; standard error Estimation: Confidence intervals, confidence interval for mean (using z), confidence interval for mean using t	1 1 No. of Lectures 1 1 1 1 1 1 1 1 1 1 1
Stochastic processes, Markov chains Limiting behaviour of Markov chains Statistics Study design: bias, confounding, precision, comparison, control Study design: observational studies vs designed experiments Exploratory data analysis: describing and displaying categorical data (tables, frequencies, bar chart) Exploratory data analysis: describing and displaying univariate numeric data (dotplots, boxplots, histograms, mean, median, quartiles/percentiles, standard deviation, variance, IQR) Exploratory data analysis: describing and displaying bivariate numeric data (scatterplot, correlation) Statistical modeling (single mean model, multiple means model, regression model) Sampling distributions: population vs sample, parameter vs statistic; distribution of sample mean, proportion; standard error Estimation: Confidence intervals, confidence interval for mean (using z), confidence interval for mean using t Estimation: confidence interval for difference in mean, confidence	1 1 No. of Lectures 1 1 1 1 1 1 1 1 1 1 1 1

Estimation: required sample size, confidence interval vs prediction interval	1
Theory of estimation: unbiasaed estimators, maximum likelihood estimators	1
Hypothesis testing: concepts and terminology, testing a single mean (z and t)	1
Hypothesis testing: errors, power, 2-sample test, paired test, testing proportion	1
Hypothesis testing: Non-parametric tests for 2 samples	1
Comparing multiple means: one-way ANOVA	1
Theory of ANOVA	1
Regresion: least squares method	1
Partitioning of variability in regression, significance testing in regression	1
Chi-squared test for independence	1
Chi-squared goodness-of-fit	1

PHY401: Electricity, Magnetism, Special Relativity and Optics - 4 Credits		
Electricity and Magnetism	No. of Lectures	
Coulomb's Law		
Gauss's Law		
Electric Field, Potential		
Conductors, Insulators		
Laplace equation		
Curl and Stoke's theorem	18	

Capacitors, capacitance and energy stored in E field	
Current and continuity equation	
Magnetic field and Moving Charges	
Force on Moving charges	
Magnetic Field and vector potential	

relativity and E and B fields		
Induction		
Inductance and energy stored in B field		
RC circuits		
CL and RLC circuits		
Displacement current		
Complete Maxwell's Equations		
Electromagnetic Waves		
Dielectrics and Electric Dipoles		
Dielectrics		
Magnetic Dipoles		
Magnetism in Matter		
Special relativity	No. of Lectures	
Space-time and simultaneity. Einstein axioms for special relativity. The	2	
Lorentz transformation.	2	
Relativistic kinematics; length contraction, time dilation. Doppler effect.		
Twin paradox.	2	
Relativistic dynamics. Mass-energy equivalence. Conservation of four-	2	
momentum. Centre of momentum frame. De Broglie waves and photons.	2	
Einstein, the equivalence principle, gravity, gravitational lenses,	1	
gravitational waves (qualitative)		
Nuclear reactions and thermonuclear power.	1	
Optics- Applications and microscopy	No. of Lectures	
Classical optics: Fermat's Principle	1	
Fourier Optics: Huygens-Fresnel Principle	1	
Fourier Optics: Fresnel diffraction integral	1	
Fourier Optics: Paraxial approximation	1	
Fourier Optics: Fraunhofer diffraction	1	
Fourier Optics: Apertures and imaging	1	
Fourier Optics: phase contrast imaging	1	
Microscopy applications	4	

Course code	CHM401	Chemistry-4 Structure and Properties	4 Cr	edits
Core/Ele	ctive/SBS	CORE PAPER		
			Syllabus Version	2023-24
Unit:1		Stereochemistry & Group Theory		08 L

Molecular shape and simple electronic structure, Isomerism: Orbitals, hybridization and shapes of molecules, sterochemical consequences of tetrahedral carbon (isomers, enantiomers, R/S, D/L, optical rotation).

Stereochemistry – optical activity: Molecules with more than one chiral centre (diastereomers, meso compounds, separation of racemic mixtures).

Stereochemistry and Reactions: Prochirality, chirality in Nature, Sterochemistry on atoms other than carbon, Retrosynthetic analysis. Stereochemistry and Mechanism (nucleophilic substitution, elimination from non-cyclic compounds).

Alkene addition reactions – Hydrogenation, halogenation, HX addition. Elimination Reactions epoxide ring forming reactions.

Zeeman effect: Effect on the energies of a system by application of a magnetic field; Magneto chemistry, spin and orbital contribution to the magnetic moment.

Symmetry operations and elements, Group theory: Definition of reducible and irreducible representations, Use of group theory to determine the irreducible representation, Assignment of point groups, Leading to definition of components of character tables (irreducible representations, characters – at least the interpretation of the sign of the character)

Simple applications, Label molecular shapes, isomers, Identify chiral molecules, Physical properties – e.g. dipole moment, possibleoptical isomers, Orbital symmetry labels (e.g. s, p & d orbitals in Td, Oh, D4h).

Unit:2

Magnetic resonance spectroscopies

EPR spectroscopy, hyperfine coupling application to organic radicals and to transition metal complexes.

Nuclear Magnetic Resonance (NMR), energies of nuclei in magnetic fields. Chemical shift and the δ scale, resonance of different nuclei, shielding, spin-orbit coupling and coupling constants, molecular symmetry. ¹³C NMR, ¹H NMR, integration, multiplicity, chemical shift typical ranges - Introduction to molecular spectroscopy and spectroscopic transitions, absorbance, transmittance, the Beer-Lambert Law, intensities of spectroscopic transitions.

Quantised vibration and simply harmonic oscillator model, wave functions, Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom.

Vibrational spectroscopy

06 L

Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands.

Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra.

Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO. Diatomic molecules, LCAO-MO, Symmetry of MO's.

Unit:4	
--------	--

Photoelectron spectroscopy

08 L

Generalisation of the application of MO approaches to polyatomic molecules. Hückel Theory-Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (*e.g.* pyridine and pyrrol). Non C-based aromatic systems.

Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors - Fates of electronic excited states – fluorescence and phosphorescence, non- radiative transitions, internal conversion and intersystem crossing, fluorescence spectra.

Applications – light emitting polymers

Unit:5	Organometallic chemistry	06 L
Types and	broad applications of organometallic complexes and catalysts. I	Ligand types and
examples.	Group 1 (LiR) and group 2 (Grignard) and p-block chemistries. EPR	spectroscopy as

tool to probe electron distribution in carbocyclic and organometallic species. Covalent interactions in coordination compounds – rationalisation of spectrochemical series in terms of bonding interactions Binary metal carbonyl complexes Synergistic bonding and the 18-electron rule. IR and NMR spectroscopy. Substitution at metal carbonyl. Other organometallic ligand types and complexes thereof. Alkyne and alkene complexes *etc*. Redox reaction in organometallic chemistry. Hydrogen complexes and oxidative addition reactions. Reductive elimination reactions. Activation and reactions of organometallic ligands. Insertions, migrations.

Catalysis involving transition metals: Catalytic systems. Water gas shift reaction, hydrogenations, acetic acid process etc. Metallocene complexes and their chemistry leading to advanced polymerization catalysts etc.

09 L

Student Work

- Assignments, Tutorials
- Reviews of various research papers, reports, books
- Presentations

Recommended Books/references

 OrganicChemistrybyJ.McMurray,7thEd.,Thomson,2008.
 Carey,F.A.andSundberg,R.J.,"AdvancedOrganicChemistry,PartB:ReactionsandSynthesis", 5th Ed.,Springer.
 PrinciplesofOrganicSynthesisbyR.Normanand J.M. Coxon, 3rd Ed., Chapman and Hall, 1993.
 Organic Chemistry by Clayden,J.,Greeves,N.andWarren,S.,"OrganicChemistry",OxfordUniversityPress.
 Smith,M.B.,"OrganicSynthesis",3rdEd.,AcademicPress.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1.	https://chem.libretexts.org/
2.	https://byjus.com/chemistry/
3.	https://openstax.org/details/books/chemistry-2e

BIO401: Genetics, Evolution and Ecology: 4 Credits		
Transmission Genetics	No. of Lectures	
Genetic variation and behaviour of genes	3	
Linkage and recombination; Mapping genes	2	
Chromosome maps and genetic markers	1	
Sex linkage and sex determination	2	
Complementation	2	
Chromosomal mutations	2	
Non-Mendelian inheritance	1	
Extrachromosomal DNA	2	
Quantitative genetics	2	
Population Genetics	No. of Lectures	
Genetic variation in populations	2	
Mutation and Genetic drift	1	
Natural selection	1	
Mutation/Selection balance	1	
Balanced polymorphism	1	

Gene flow & inbreeding	1	
Population Biology	No. of Lectures	
Nature of populations; numbers, mixing (dispersal), structure in age/stage	1	
Density independent, density dependent growth (exponential and logistic	2	
growth equations)		
R & K selection, life-histories and links to population growth parameters,	1	
(annual vs perennial life-histories, clonality)		
Demography, Life tables, matrix models (requires simple matrix	1	
mathematics) and Epidemiology (simple functions)	1	
Communities	No. of Lectures	
Nature of communities; Community structure: how it is described,	1	
measured; what drives it; species composition, diversity (alpha, beta,		
gamma)		
Intra-community (interspecific) interactions (bi-partite networks);	1	
Symbiosis, Predation, Competition, Host-parasite interactions		
Dynamics of communities (perturbation and succession)	1	
Biomes (communities on a global scale)	1	
Ecosystems	No. of Lectures	
Pond ecosystem (or other integrated example)	1	
Food chains and webs	1	
Pyramids (numbers, biomass, energy), abstraction, defining trophic levels,	1	
the problem of omnivory (stable isotope tracers)		
Biogeochemical cycles (water, C, N, P) pools and fluxes, mass budget		
models. Rates of processes: productivity, decomposition, trophic transfer,	1	
turnover and Mean Residence Time.		

<u> PHY402: Physics Practical -</u> 2 Credits

List of experiments

- 1. Verification of Stefan's Law by Electricalmethod.
- 2. Study of LR circuit.
- 3. Study of LCR circuit

4. To determine the self-inductance of the coil using Anderson's bridge and calculate the value of inductive reactance (XL) of the coil at a particular frequency.

5. Measurement of wavelength of Laser by DiffractionGrating.

6. To determine the Wavelength of main spectral line of mercury light usingplanetransmissiongrating.

CHM402: Chemistry Practical - 2 Credits

List of Physical chemistry experiments

- **1.** Determination of the stability constant of a complex byspectrophotometry.
- 2. The reaction between potassium persulphate and potassium iodide bycolorimetry.
- **3.** Determine the formula and stability constant of a metal ion complex (Lead Oxalate) by polarography.
- **4.** Analysis of copper oxide and copper dioxide to determine law of multipleproportions.
- **5** Behaviour of water at differenttemperatures

<u>List of Inorganic chemistry</u> <u>experiments (Any 3)</u>

- 1. Photometric Analysis To study complex formation between Fe (III) and salicylic acid and find the formula and stability constant of the complex.
- 2. Simultaneous determination of Cr+2 andCu+2
- **3.** To determine the strength of given mixture of carbonate and bicarbonate in the given mixture by pH metric method.
- 4. Determination of chemical oxygen demand(COD)
- 5. Determination of Biological oxygen demand(COD)

List of Organic chemistry experiments

(Any 3)

1. Organic Preparations: Double Stage

- 1. Glycine Hydantoic acid Hydantoin
- 2. <u>Benzoin Benzil Benzilicacid</u>
- 3. P-cresol 4,6-Dimethylcoumarin 3-Bromo-4,6 Dimethyl Coumarin
- **4.** Benzophenone Oxime –Benzanilide
- 5. Acetanilide p-Bromoacetanilide –p-Bromoaniline
- **6.** Hydroquinone Quinoline 1,2,4 –Triacetoxybenzene.

BIO402: Biology Practical - 2 Credits

List of Experiments (Any 6)

1. Create an artificial mesocosm (tub/tank of defined area), and inoculate with Lemna./Azolla sp. (brought from nearby habitats). Monitor growth, density and biomass over time.

2. a) Visit different types of water bodies (one river/stream and one quarry/pond/lake) and conduct sampling. Sampling methods (point count/line transect/quadrat) in field. Learn methods

for estimating plant biomass (using GBH). (Field session)

3. Determination of population density in a natural community by quadrate method

4. Solving Genetic problems which obey Mendelian laws

5. Determination of linkage and cross-over analysis – Problem solving

6. Sex linked Inheritance in drosophila - problem solving

7. Analyze the Human karyotype chart for different genetic disorders

8. Use of ABO blood group data to calculate allele frequencies. (Data can be gathered both by interviews and by actual blood group determination)

VALUE ADDED4: GENERAL AWARENESS (2 CREDITS)

Course code - 4FE Hours

Total Lecture Hours 18

Following are the areas which cover the various test items prescribed in the syllabus:

- 1. Verbal Aptitude
- 2. Numerical Aptitude
- 3. Abstract Reasoning
- 4. Tamil and Other Literature
- 5. General Science and Technology and Education
- 6. Computer
- 7. Economics and Commerce
- 8. Social Studies
- 9. Sports
- 10. **Current Affairs**

Textbook(s)

1. General Awareness, Bharathiar University

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://www.careerpower.in/gk-general-knowledge.html

Course Designed By: Bharathiar University

SEMESTER V

PHY501: Classical Mechanics

This course extends knowledge of fundamental thermal physics principles and introduces the powerful and elegant Lagrangian and Hamiltonian formulations of classical mechanics

PHY501: Classical Mechanics – 4 Credits	
Central force Problem	No. of Lectures
Nature of orbits in an attractive inverse square field	3
Kepler's laws of planetary motion. Rutherford scattering as an example of repulsive potential.	3
Mechanics of Ideal Fluids	No. of Lectures
Streamlines and flow lines; Equation of continuity; Euler's equation of motion;	3
Streamline motion - Bernoulli's equation and its applications. Definition of Newtonian and non-Newtonian fluids	3
Lagrangian and Hamiltonian formulation of Classical Mechanics	10
Generalized coordinates, constraints and degrees of freedom; D'Alembart's principle;	2
Lagrange's equation for conservative systems (from D'Alembert's principle; variational principle not required) and its application to simple cases	4
Generalized momentum; Idea of cyclic coordinates, its relation with conservation principles;	4
Definition of Hamiltonian, Hamilton's equation (derivation by Legendre transformation) and its application to simple cases.	4

- Mechanics: C. Kittel, W.D. Knight, M.A. Ruderman, C.A. Helmholz and B.J.Moyer (2008) Berkeley Physics Vol 1, Tata McGraw-HillLtd
- Classical Mechanics: N. Rana and P. Joag (2001) Tata McGraw-HillEducation
- Classical Mechanics: J.R. Taylor (2005) University ScienceBooks
- Feynman Lectures in Physics, Vol I, Addison-Wesley.
- Classical Mechanics: H. Goldstein, C. Poole and J. Safko (2002) 3rd edition, Pearson
- Classical Dynamics of Particles and Systems: Thornton and Marion (2003)Thomson Learning EMEA Ltd

PHY502: Quantum Mechanics

Quantum mechanics plays a central role in our understanding of fundamental phenomena, primarily in the microscopic domain. It lays the foundation for an understanding of atomic, molecular, condensed matter, nuclear and particle physics.

PHY502: Quantum Mechanics – 4 Credits	
Time dependent and time independent Schrodinger equation	No. of Lectures
Eigenstates, normalization and orthonormality.	6
Simple applications of Quantum Mechanics	No. of Lectures
One dimensional potential well and barrier, boundary conditions, bound and unbound states.	2
Reflection and transmission coefficients for a rectangular barrier in one dimension – explanation of alpha decay.	4
Free particle in one dimensional box, box normalization, momentum eigen functions of a free particle	4
Linear harmonic oscillator, energy eigenvalues from Hermite differential equation, wave function for ground state, parity of wave function.	2
Schrodinger equation in spherical polar coordinates	No. of Lectures
Angular momentum operators and their commutation relations;	2
eigenvalues and eigen functions of L2 and Lz; theorem of addition of angular momenta [statement with examples].	6
The hydrogen atom problem – stationary state wave functions as simultaneous eigen functions of H, L2, and Lz;	5
radial Schrodinger equation and energy eigenvalues [Laguerre polynomial solutions to be assumed]; degeneracy of the energy eigenvalues.	5

- Quantum Physics: S. Gasiorowicz (2003) 3rd edition, Wiley IndiaEdition
- Quantum Physics: E.H. Wichman (2008) Berkeley Physics Course, Vol 4, Tata McGraw-Hill Ltd
- Introduction to Quantum Mechanics, David J. Griffiths, PearsonEducation
- Introductory Quantum Mechanics, Richard Liboff, Addison-Wesley; 4edition
- A Modern Approach to Quantum Mechanics, John Townsend, VivaBooks
- Principles of Quantum Mechanics: R. Shankar (2010) 2nd edition, Springer

PHY503: Solid State Physics

Solid State Physics explains how the macroscopic properties of solids result from atomic scale properties. Solid State Physics forms the theoretical basis of Materials Science

PHY503: Solid State Physics – 4 Credits		
Crystal Structure	No. of lectures	
Crystalline and amorphous solids, translational symmetry	2	
Elementary ideas about crystal structure, lattice and bases, unit cell, reciprocal lattice	3	
fundamental types of lattices, Miller indices, lattice planes, simple cubic, f.c.c. and b.c.c. lattices	5	
Laue and Bragg equations. Determination of crystal structure with X-rays.	2	
Elementary band theory	No. of lectures	
Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & amp; Hall coefficient. Effect of concentration and temperature on fermi level.	6	
Dielectric properties of materials	No. of lectures	
Electronic, ionic and dipolar polarizability, local fields, induced and oriented polarization – molecular field in a dielectric; Clausius-Mosotti relation.	4	
Magnetic properties of materials	No. of lectures	
Dia, para and ferro-magnetic properties of solids. Langevin's theory of diamagnetism and paramagnetism. Quantum theory of paramagnetism, Curie's law. Ferromagnetism: spontaneous magnetization and domain structure; temperature dependence of spontaneous magnetisation; Curie-Weiss law, explanation of hysteresis.	8	
Superconductivity	No. of lectures	
Introduction (Kamerlingh-Onnes experiment), effect of magnetic field, Type-I and type-II superconductors, Isotope effect. Meissner effect. Heat capacity. Energy gap. Ideas about High-Tc superconductors	5	

- Solid State Physics: N.W. Ashcroft and N.D. Mermin (1976) College edition, Harcourt College Publishers
- Introduction to Solid State Physics: C. Kittel (2004) 8th edition, John Wiley and Sons
- Atomic and Electronic Structure of Solids, E. Kaxiras; Cambridge University Press.

PHY504: Electrodynamics

Introduction to electrodynamics and a wide range of applications including communications, superconductors, plasmas, novel materials, photonics and astrophysics

PHY504: Electrodynamics – 4 Credits	
Generalization of Ampere's Law	No. of lectures
Displacement Current, Maxwell's Field Equations, Wave	4
equation for electromagnetic (EM) field and its solution	
plane wave and spherical wave solutions, transverse nature of	
field, relation between E and B; energy density of field, Poynting vector and Poynting's theorem, boundary conditions	4
EM Waves in an isotropic dielectric	No. of lectures
Wave equation, reflection and refraction at plane boundary,	4
reflection and transmission coefficients	
Fresnel's formula, change of phase on reflection, polarization on	4
reflection and Brewster's law, total internal reflection.	
EM waves in conducting medium	No. of lectures
Wave equation in conducting medium, reflection and	3
transmission at metallic surface – skin effect and skin depth,	
propagation of E-M waves between parallel and conducting	5
plates – wave guides (rectangular only)	
Dispersion	No. of lectures
Equation of motion of an electron in a radiation field : Lorentz	2
theory of dispersion – normal and anomalous	
Sellmeier's and Cauchy's formulae, absorptive and dispersive	6
mode, half power frequency, band width.	
Scattering	No. of lectures
Scattering of radiation by a bound charge, Rayleigh's scattering	4
(qualitative ideas), blue of the sky, absorption.	

- Electricity and Magnetism: E.M. Purcell (2008) Berkeley Physics Course, Vol2, Tata McGraw-Hill Ltd
- Feynman Lectures on Physics: R.P. Feynman, R.B. Leighton and M. Sands (2011) The Millenium edition, Vol 2, Basic Books
- Introduction to Electrodynamics: D.J. Griffths (2012) Pearson Education
- Modern Electrodynamics: A. Zangwill (2013) Cambridge University Press

PHY- 505: ELECTIVE 1-Introduction to Astrophysics

The course defines and analyzes the basic concepts in astronomy. Describes the working principle of the telescope. Identifies important constellations – orient in space. Describes the planets of the solar system and their properties. Interprets the phenomena in the Universe. Describes and understand the physical processes in the Sun and other stars.

PHY505: Introduction to Astrophysics – 2 Credits	
Astronomical Scales	No. of lectures
Astronomical Distance, Mass and Time, Scales, Brightness, Radiant Flux and Luminosity, Measurement of Astronomical Quantities Astronomical Distances, Stellar Radii, Masses of Stars, Stellar Temperature. Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescopes Mountings, Space	4
Telescopes, Telescope Mountings, Space	No of lectures
(Types of Detectors, detection Limits with Telescopes).	
The sun (Solar Parameters, Solar Photosphere, Solar Atmosphere, Chromosphere. Corona, Solar Activity, Basics of Solar Magneto- hydrodynamics. Helioseismology). The solar family (Solar System: Facts and Figures, Origin of the Solar System: The Nebular Model, Tidal Forces and Planetary Rings, Extra-Solar Planets.	6
Stellar spectra and classification Structure	No. of lectures
(Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification)	2
The milky way	No. of lectures
Basic Structure and Properties of the Milky Way, Nature of Rotation of the Milky Way(Differential Rotation of the Galaxy and Oort Constant, Rotation Curve of the UGC Document on LOCF Physics 189 Galaxy and the Dark Matter, Nature of the Spiral Arms), Stars and Star Clusters of the Milky Way, Properties of and around the Galactic Nucleus.	6
Galaxies	No. of lectures
Galaxy Morphology, Hubble's Classification of Galaxies, Elliptical Galaxies (The Intrinsic Shapes of Elliptical, de Vaucouleurs Law, Stars and Gas). Spiral and Lenticular Galaxies (Bulges, Disks, Galactic Halo) The Milky Way Galaxy, Gas and Dust in the Galaxy, Spiral Arms	6

- Galaxies in the Universe: An Introduction: L.S. Sparke and J.S. Gallagher III(2000) Cambridge University Press
- Galactic and Extragalactic Radio Astronomy: G.L. Verschuur and K.I. Kellermann (1988) Springer-Verlag
- The Physics of Stars (Manchester Physics Series): A.C. Phillips (1999) John Wiley &Sons

PHY-506: ELECTIVE 2- Nanotechnology

This course will enable students to have the knowledge of syntheses and characterization of nanomaterials. It also highlights the applications and significance of nanotechnology in terms of their properties.

PHY506: Nanotechnology – 2 Credits		
Nanoscale systems	No. of lectures	
Length scales in physics, Nanostructures: 1D, 2D and 3Dnanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1Dnanostructures and its consequences	4	
Synthesis and Characterization of nanostructure materials	No. of lectures	
Top down and Bottom up approach, Photolithography. Ball milling. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. X-Ray Diffraction. Optical Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy.	4	
Optical properties	No. of lectures	
Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi- particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasiparticles and excitons, charging effects. Radiative processes: General formalization- absorption, emission and luminescence. Optical properties of heterostructres and nanostructures.	8	
Applications	No. of lectures	
Applications of nanoparticles. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).	8	
- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, 2011, Cambridge University Press.
- Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).

PHY507: Physics Lab I - 2 Credits

- 1. Verification of Hall Effect.
- 2. Hysteresis Loop, coercivity, saturation magnetization.
- 3. Susceptibility of Paramagnetic Materials by Quincke's Tube method.
- 4. Michelson Interferometer with He-Ne Laser.

PHY508: Physics Lab II (Analog and digital) - 2 Credits

- 1. Characteristics of p-n Junction diode
- 2. Characteristics of transistor in forward and reverse bias.
- 3. Characteristics of Zener diode.

PHY509: Research Project work - - 2 Credits

Combination of experimental and theoretical aspects of a problem. Perform experiment, collect data, analyze with various tools and software. Derive conclusion (positive or negative) from the work and summarize the report in form of dissertation in the VI semester

SEMESTER VI

PHY601: Statistical Physics

Statistical mechanics, the microscopic basis of classical thermodynamics, is developed in this subject. It is one of the core areas of physics, finding wide application in solid state physics, astrophysics, plasma physics and cosmology. Using fundamental ideas from quantum physics, a systematic treatment of statistical mechanics is developed for systems in equilibrium

PHY601: Statistical Physics- 4 Credits	
Microstates and macrostates	No. of lectures
Classical description in terms of phase space and quantum description in terms of wave functions.	1
Hypothesis of equal a priori probability for microstates of an isolated system in equilibrium. Interactions between two systems – thermal, mechanical and diffusive.	3
Statistical definition of temperature, pressure, entropy and chemical potential. Partition function of a system in thermal equilibrium with a heat bath	3
Classical statistical mechanics	No. of lectures
Maxwell-Boltzmann distribution law. Calculation of thermodynamic quantities for ideal monoatomic gases. Ergodic hypothesis and Liouville theorem and Ideal gases (monoatomic and diatomic): Translational, rotational, vibrational, electronic partition functions, thermodynamic functions	10
Motivations for quantum statistics	No. of lectures
Gibbs' paradox. Identical particle and symmetry requirement. Derivation of MB, FD and BE statistics as the most probable distributions (micro-canonical ensemble). Classical limit of quantum statistics.	6
Quantum statistical mechanics	No. of lectures
Bose-Einstein statistics: Application to radiation – Planck's law. Rayleigh Jeans and Wien laws as limiting cases, Stefan's law.	8
Fermi-Dirac statistics: Fermi distribution at zero and non-zero temperatures	7

- Statistical Mechanics: K. Huang (1987) 2nd edition, Wiley
- Fundamental of Statistical and Thermal Physics: F. Reif (2008) Waveland PrInc
- Statistical Physics of Particles: Mehran Kardar (2007) Cambridge UniversityPress
- Statistical Physics- Reif-(2008)) Berkeley Physics Course, Vol 5, Tata McGraw-Hill Ltd

PHY602: Subatomic Physics

This course intends to develop familiarity with the vast areas of nuclear and particle physics as well as develop an interest in these subjects. It also helps students acquire knowledge in the content areas of nuclear and particle physics, focusing on concepts that are commonly used in this area

PHY602: Subatomic Physics -4 Credits	
Bulk properties of nuclei and Nuclear structure	No. of lectures
Nuclear mass, charge, size, binding energy, spin and magnetic moment. Isobars, isotopes and isotones; mass spectrometer. Nature of forces between nucleons, nuclear stability and nuclear binding, the liquid drop model (descriptive) and the Bethe-Weizsacker mass formula, application to stability considerations, extreme single particle shell model (qualitative discussion with examples)	2
Unstable nuclei and Nuclear Reactions	No. of lectures
Alpha decay : alpha particle spectra – velocity and energy of alpha particles. Geiger-Nuttal law. Beta decay : nature of beta ray spectra, the neutrino, energy levels and decay schemes, positron emission and electron capture, selection rules, beta absorption and range of beta particles, Kurie plot. Gamma decay : gamma ray spectra and nuclear energy levels, isomeric states. Gamma absorption in matter – photoelectric process, Compton scattering, pair production (qualitative)	2
Conservation principles in nuclear reactions. Q-values and thresholds, nuclear reaction cross-sections, examples of different types of reactions and their characteristics. Bohr's postulate of compound nuclear reaction, Ghoshal's experiment.	2
Nuclear fission and fusion	No. of lectures
Discovery and characteristics, explanation in terms of liquid drop model, fission products and energy release, spontaneous and induced fission, transuranic elements. Chain reaction and basic principle of nuclear reactors. Nuclear fusion: energetics in terms of liquid drop model.	6
Elementary particles	No. of lectures
Four basic interactions in nature and their relative strengths, examples of different types of interactions. Quantum numbers -mass, charge, spin, isotopic spin, intrinsic parity, hypercharge. Charge conjugation. Conservation laws. Classifications of elementary particles – hadrons and leptons, baryons and mesons, elementary ideas about quark structure of hadrons – octet and decuplet families.	18
Particle Accelerator and Detector Cyclotron – basic theory, synchrotron, GM counter	

REFEENCE BOOKS:

- Nuclear Physics Cottingham and Greenwood (Cambridge UniversityPress).
- Concepts of Nuclear Physcics R. Cohen (Tata-Mc GrawHill).
- Paramanu o KendrakGathan Parichay S. N. Ghoshal(WBSBB).
- Atomic and Nuclear Physics S. N. Ghoshal (S.Chand).
- Nuclear Physics S. B. Patel (New Age).
- Nuclei and Particles E. Segre (Benjamin).
- Nuclear Physics: Principles and applications J.S. Lilley (Willey Eastern).
- Fundamentals in Nuclear Physics: from Nuclear Structure to Cosmology J. Basdevant, J. Rich

and M. Spiro (Springer).

Particle Physics – Seiden (Persian Education)

PHY603: Atomic and Molecular Spectroscopy and Lasers

This course intends to throw light on the phenomenon of the interaction of light with matter in terms of the relationship with the molecular structure. The course will enable students to select molecular spectroscopy methods suitable for solving given scientific problem.

PHY603: Atomic and Molecular Spectroscopy and Lasers - 4 Credits	
Atomic Spectroscopy	No. of lectures
LS and JJ coupling schemes. Terms for equivalent and non-equivalent electron atom. Spectra of one and two electron systems. Electron spin, spin orbit interaction, fine structure, relativistic correction and radiation correction (Lamb Shift). Electric dipole selection rules. Intensity rules. Alkali type spectra. Zeeman effect. Paschen-Back effect. Stark effect. Hyperfine structure and isotopic shifts. Complex Spectra: Vector model for three or more valence electrons. Inverted terms. Compound doublet. Inner-Shell Excitation and Auto ionization, Line intensities, Transition probabilities, oscillator strength. Forbidden transitions.	15
Molecular Spectroscopy	No. of lectures
Rotational spectra of diatomic molecules. Vibrational spectra of diatomic molecules. Rotation- Vibration spectra of diatomic molecules. Classification of electronic states. Electronic spectra of diatomic molecules. Franck-Condon principle. Rotational spectra of linear polyatomic molecules: Coriolis interaction and effect of 1-type doubling in linear molecules. Nuclear spin statistical weights and their effect on intensities. Rotational spectra of symmetric (prolate and oblate) molecules. Vibration-rotation spectra of polyatomic molecules: Parallel and perpendicular bands of linear molecules and symmetric top (prolate and oblate) molecules.	15
Spectroscopy (elementary and qualitative)	No. of lectures
Experimental techniques in spectroscopy: FTIR Raman, Stoke's antiStoke's.	3
Laser Physics Spectroscopy(elementary and qualitative)	3

- Eisberg, R. and Resnick, R., Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, II Edition, John Wiley, 1985
- Banwell, C.N., Fundamentals of Molecular Spectroscopy, III Edition, Tata-McGraw Hill,1972
- Wilson, J. and Hawkes, J. F. B., Optoelectronics- An Introduction, Prentice Hall,1983 Page 79 of 18

PHY604: Digital and Analog Electronics

This course is designed for students to know the operation and the structure of switching circuits, use and working of diodes and transistors as a switching circuits, logic families, TTL, ECL, and MOSFET and amplifiers etc

PHY604: Digital and Analog Electronics -4 Credits	
Digital Circuits	No. of lectures
Difference between Analog and Digital Circuits. Binary Numbers.	
Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and transistors)	4
De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit	_
using Boolean Algebra. Fundamental Products. Minterms and	5
Maxterms. Conversion of a Truth Table into an Equivalent Logic	
Circuit by (1) Sum of Products Method and (2) Karnaugh Map.	
Binary Addition. Binary Subtraction using 2's Complement Method). Half Adders and Full Adders and Subtractors, 4-bit binary Adder-	4
Subtractor.	
Semiconductor Devices and Amplifiers:	No. of lecture
Semiconductor Diodes: P and N type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode. PN junction and its characteristics. Static and Dynamic Resistance. Principle and structure	5
of (1) LEDs, (2) Photodiode, (3) Solar Cell.	
Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Active, Cutoff & Saturation regions Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line & Q-point. Voltage Divider Bias Circuit for CE Amplifier. h-parameter Equivalent Circuit. Analysis of single-stage CE amplifier using UGC Document on LOCF Physics 233 hybrid Model. Input & output Impedance. Current,	12
Voltage and Power gains. Class A, B & C Amplifiers	
Operational Amplifiers (Black Box approach):	No. of lecture
Characteristics of an Ideal and Practical Op-Amp (IC 741), Open-loop and closed-loop Gain. CMRR, concept of Virtual ground. Applications of Op-Amps: (1) Inverting and non-inverting Amplifiers, (2) Adder, (3) Subtractor (4) Differentiator (5) Integrator (6) Zero crossing detector	6

Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained	
Oscillations. Determination of Frequency of RC Oscillator	

- Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- Electronic devices & circuits, S. Salivahanan & N.S. Kumar, 2012, Tata Mc-Graw Hill
- Microelectronic Circuits, M.H. Rashid, 2nd Edn., 2011, Cengage Learning.
- Modern Electronic Instrumentation and Measurement Tech., Helfrick and Cooper, 1990, PHI Learning
- Digital Principles and Applications, A.P. Malvino, D.P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn., Oxford University Press.

PHY605: ELECTIVE 3- Renewable Energy and Energy Harvesting

This course enables the students to outline the principles of energy harvesting systems as well as methods of electro-mechanical conversion, principle of photovoltaic cells and thermoelectric generators. They will be able to describe the physical principles of energy harvesting methods mainly electro-mechanical conversion and simulation modeling of such mechatronic systems.

PHY605: Renewable Energy and Energy Harvesting - 2 Credits	
Fossil fuels and Alternate Sources of energy	No. of lectures
Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity	3
Solar energy	No. of lectures
Its importance, storage of solar energy, solar pond, no convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption	3
Ocean Energy, Hydro Energy and Geothermal Energy	No. of lectures
Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. (3 Lectures) Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. (2 Lectures) Geothermal Resources, Geothermal Technologies. Hydropower resources, hydropower technologies, environmental impact of hydro power sources	6
Piezoelectric Energy harvesting	No. of lectures
Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric Energy harvesting applications. Human power	4
Flectromagnetic Energy Harvesting	No of lectures
Electromagnetic Energy Harvesting	2
Linear generators, physics mathematical models, recent applications	2
Environmental issues and Renewable sources of energy, sustainability.	2

- Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- Solar energy M P Agarwal S Chand and Co. Ltd.
- Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004,Oxford University Press, in association with The Open University.
- Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook,2009
- J.Balfour, M.Shaw and S. Jarosek, Photo voltaics, Lawrence J Goodrich (USA).
- http://en.wikipedia.org/wiki/Renewable_energy

PHY606: ELECTIVE 4 -Introductory Biophysics

This course will enable students to define the fundamental concepts of biophysics. The course explains the integration of physical theory into biological processes

PHY606: Introductory Biophysics - 2 Credits	
Thermodynamics of living systems	No. of lectures
Conservation of energy in living systems, Entropy and Life, Gibbs and Standard free energy, Equilibrium constant, Coupled reactions.	2
Dynamics of biomolecules	No. of lectures
Diffusion, Laws of diffusion, Active transport, facilitated diffusion, Osmosis, Osmotic pressure, Osmoregulation, Viscosity and biological importance, Surface tension, Factors influencing surface tension, Biological importance.	4
Atomic & Molecular structure	No. of lectures
Structure of atom-Models & theories, Periodic table, Concept of bonding; valence of carbon; hybridizations of carbon; hybridizations of nitrogen & oxygen; molecular orbital theories, polar & non polar molecules; inductive effect; Secondary bonding: weak interactions, hydrogen bonding; dipole-dipole & dipole induced dipole interactions; London dispersion forces. Bonds within molecules-Ionic, covalent, Hydrogen, Electrostatic, Disulphide& peptide bonds, Van-der Waals forces Bond lengths & Bond energies, Bond angles, Structural isomerism; optical isomerism & optical activity.	8
Physico-chemical Foundations	No. of lectures
Biophysics of Water: Physicochemical properties of water, Molecular structure, Nature of hydrophobic interactions, Water Structure. Small-Molecule Solutes: Hydrophiles, Hydrophobes, Large Hydrophobic Solutes and Surfaces, Aqueous Environment of the Cell, State of water in bio- structures & its significance, Protein Hydration-Nonspecific Effects, The Hydration Shell. Acid	12
& Bases: Acid-Base theories, Mole concept, Molarity, Molality & Normality, Ampholyte, concept of pH, measurements of pH, Henderson–Hasselbatch equation, Titration curve & pK values, Buffers & Stability of their pH, numerical problems. Redox potential : Oxidation –Reduction, examples of redox potential in biological system	

- Biochemistry by Voet and Voet
- Biological Thermodynamics by Donald T.Haynie
- Introductory Biophysics by J. R. Claycomb and J.Q.P.Tran
- Molecular and Cellular Biophysics by Meyer B.Jackson

PHY607- Physics Lab I - 2 Credits

- 1. Determine Planck's constant using Photo Vacuum Tube.
- 2. Refractive index of transparent material.
- 3. Study of Zeeman Effect.
- 4. G M counting set up for radioactive experiments.

PHY608- Physics Lab II (Analog and digital) - 2 Credits

- 1. Verification of Logic Gates.
- 2. Charging and Discharging of Capacitor.
- 3. Verification of Kirchhoff's law.
- 4. Solar Power Lab

PHY609- Research Project work - 2 Credits

Combination of experimental and theoretical aspects of a problem. Perform experiment, collect data, analyze with various tools and software. Derive conclusion (positive or negative) from the work and summarize the report in form of dissertation in the VI semester.