Annexure No.	27 D						
SCAA Dated	29.02.2008						

BHARATHIAR UNIVERSITY: COIMBATORE – 641 046 M.Sc., ANIMAL BIOTECHNOLOGY (CBCS Pattern) with Compulsory Diploma in Animal Biodiversity and Conservation

(FOR THE STUDENTS ADMITTED DURING THE ACADEMIC YEAR 2007-2008 BATCH AND ONWARDS)

Admission of Candidates

Eligibility Condition:

B.Sc. Zoology
B.Sc. Advanced Zoology
B.Sc. Applied Zoology
B.Sc. Applied Zoology
B.Sc. Life Sciences
B.Sc. Animal Science and Biotechnology
B.Sc. Advanced Zoology and Biotechnology
B.Sc. Biotechnology
B.Sc. Biotechnology
B.Sc. Biochemistry
B.Sc. Genetics
B.Sc. Environmental Sciences
B.Sc. Environmental Zoology
B.V.Sc.

						Uniersity Examinations						
Sem	Paper Core/	Sub. Code	Subject	uctional Veek (L)	ictional Veek (P)	Internal		External	tal	C	redi	ts
	Supportive	07ZOOB		Instr Hrs / V	Instr Hrs / V	Theory	Practical	Theory	To	Theory	Practical	Total
	Core -I	13A	Biochemistry and Biophysics	3	1	15	25	60	100	3	1	4
	Core – II	13B	Molecular Cell Biology	3	1	15	25	60	100	3	1	4
	Core – III	13C	Microbiology	3	1	15	25	60	100	3	1	4
Ι	Elective - I	1EA	An Introduction to Human Cytogenetics	4		40	-	60	100	4	-	4
	Supportive- I	1GS01	Entomo - biotechnology	2		20	-	30	50	2	-	2
	Diploma I	1LA	Evolution and Biogeography	4		40	-	60	100	4	-	4
	Core – IV	23A	Proteomics	3	1	15	25	60	100	3	1	4
	Core – V	23B	Receptor Biology	3	1	15	25	60	100	3	1	4
	Core – VI	23C	Stem Cell Technology	3	1	15	25	60	100	3	1	4
п	Elective – II	2EA	Molecular Entomology	4		40	-	60	100	4	-	4
11	Supportive – II	2GS	Crustacean Aquaculture and Technology	2		20	-	30	50	2	-	2
	Diploma – II	2LA	Wildlife Biology and Conservation	4		40	-	60	100	4	-	4
							-					
	Core – VII	33A	Nanobiotechnology	3	1	15	25	60	100	3	1	4
	Core – VIII	33B	Immunotechnology	3	1	15	25	60	100	3	1	4
	Core – IX	33C	Genetic Engineering	3	1	15	25	60	100	3	1	4
III	Elective – III	3EA	Ecobiotechnology	4		40	-	60	100	4	-	4
	Supportive – III	3GS	Marine Biotechnology	2		20	-	30	50	2	-	2
	Diploma - III	3LA	Animal Biodiversity	4		40	-	60	100	4	-	4

	Core - X	43A	Bioinformatics and Genomics	3	1	15	25	60	100	3	1	4
IV	Diploma - IV	4LA	Practical (Evolution and Biogeography, Wildlife Biology and Conservation and Animal Biodiversity)		4	40	-	60	100	-	4	4
			Project Work						200			8
			Viva-voce Examination						50			2
			Field Trip (Visiting Educational Institution, Research Labs. and industries etc.)						50			2
			Skill Development (Communication skills, Personality development, Summer training programme, Hands on training, On the job training programme etc.,)						50			2
			Total						2200			88

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 3 of 32

L-Lecture hours per week, P-Practical hours per week.

Core: I - Biochemistry and Biophysics

The objective of the course is to provide a concise and unifying approach to physical chemistry, biochemistry and biophysics. It also provides the structure, function and interactions of bio molecules, how biological processes occur at the molecular level and to understand these processes with strong backgrounds in chemistry, biology, and physics.

Unit – I

13A

Structure of atom, molecules, ionic bonds, covalent bonds, hydrogen bond, Vander Vaal's forces, Intermolecular forces, electrolytes, pH and buffer capacity in the cell environment.

Unit – II

Amino acids: Structure, classification, properties, isoelectric point and zwitter ions. **Proteins**: Classification based on chemical structure, function and solubility; properties, primary, secondary and tertiary, Helix, principles of isolation and purification, Synthesis of polypeptides. **Enzymes**: Classification, Kinetics, Co-factors, Enzyme inhibition, Enzyme substrate compounds.

Unit – III

Nucleic acids: DNA structure and properties, DNA as a genetic material, DNA synthesis – mechanism of replication (semi conservative and reverse transcription), nucleotides. **Different types of RNA**: mRNA and rRNA.

Lipids: Classification, properties – saturated and unsaturated fatty acids – plant waxes, steroids, cholesterol and lecithin.

Carbohydrates: Classification, structure and properties of functional groups.

Unit – IV

Bioenergetics: Laws of thermodynamics, concept of free energy, oxidation reduction (redox) reactions. Energy coupling reactions, energy rich compounds, ATP cycle, standard free energy, membrane potentials, and negative entropy changes in living systems, enzyme catalysis.

Unit – V

Analytical techniques: Principle and application of Chromatography (Paper, thin-layer, column and GLC), Centrifugation (RPM and G, Ultra centrifugation), Spectroscopic techniques (UV, visible spectroscopy, X-ray crystallography, NMR, IR, fluorescence & atomic absorption), Isotopes and their importance (GM counters & Scintillation counting).

Practical:

- 1. pH: Structure and operation of pH meter
- 2. To measure the pH of human blood.
- 3. Preparation of buffers: Phosphate buffer and citrate buffer.
- 4. Chromatographic techniques:
 - a. Paper chromatographic techniques to separate amino acids.
 - b. Thin layer chromatographic technique to separate lipids.
 - c. Column chromatographic techniques to separate urinary pigments.
- 5. Colorimetric/Spectrophotometric estimation of the following biomolecules.
 - a. Total free amino acids (Ninhydrin reagent method)
 - b. Protein (Biuret and Lowry *et al.*, 1951 method)

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 5 of 32

- c. Total soluble carbohydrates (Anthrone reagent method)
- d. Total cholesterol (Zlatkis et. al. method)
- 6. Electrophoresis (PAGE) Demonstration.

Reference Books:

- 1. Biochemistry, by D.Voet and J.G. Voet, 2004. John Wiley & Sons, USA
- 2. Biochemistry, by R.H. Garrett and C.M. Grisham, (3rd Edition) 2007. *Saunders College Publishers*.
- 3. Principles of Biochemistry by A.L. Lehninger. 1984. CBS Publishers and Distributors, New Delhi.
- 4. Physical Biochemistry by D. Friefelder, (2nd edition) 1982. W.H. Freeman & Company.
- 5. The Physical Basis of Biochemistry, by Peter R. Bergethon, Springer-Verlag, 1998.
- 6. Biophysics-An Introduction, by C. Sybesma, 1989, Kluwer Academic Publisher.
- 7. Cellular Biophysics I and II, by Thomas F. Weiss, 1995, MIT Press.
- 8. Basic Biophysics for Biology, by E. K. Yeargers, 1992, CRC press.
- 9. Principles of Biochemistry by Albert L. Lehninger (4th edition) 2004. *CBS Publishers & Distributors*, New Delhi.
- 10. Biochemistry by Lubert stryer (4th edition) 2000. Freeman International Edition.
- 11. Biochemistry by Keshav Trehan, 1990. Wiley Eastern Publications.
- 12. Fundamentals of Biochemistry by J.L.Jain *et. al.* (4th edition) 1994. S.Chand and Company.
- 13. Textbook of Organic Chemistry (A Modern Approach) Ist edition) 2002. McGraw Hill.
- 14. The Biochemistry of Nucleic acid Tenth Edition-Roger L.P.Adams, John T. Knowler and David P.Leader, 1992. Chapman and Hall Publications.
- 15. Essentials of Biophysics by Narayanan, P (2000), New Age Int. Pub. New Delhi.
- 16. A Text Book of Biophysics by Roy R.N. (1999), New Central Book Agency.
- 17. Biochemistry. S. C. Rastogi, 2nd edition. 2003. *Tata McGraw Hill Publishing Company Ltd.*, N. Delhi.

Core: II – Molecular Cell Biology

13B

Unit – I Cell organization, Sub-cellular structures of prokaryotic and eukaryotic cells. Synthesis and sorting of plasma membrane. Chromatin structure and nucleosome concept, Organization and function of genetic material, Gene paradox, Repetitive DNA, Satellite DNA, Overlapping genes,

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 6 of 32

Split genes, Pseudogenes. Chromatin, nuclear and mitochondrial genome organization, Structures of DNA and RNA, Stereochemistry of bases and secondary structures. Genetic structure analyses of eukaryotic genomes.

Unit-II

Evidence of basic targets, Enzymes, Mechanisms of DNA replication in eukaryotes. t-RNA, m-RNA, r-RNA and hn-RNA structures and folding, Mechanisms in eukaryotes RNA splicing. Ribosomes, Genetic code, General control of DNA, RNA and protein synthesis, Post-translational modifications, Protein targeting.

Unit-III

Gene regulation in eukaryotes, Gene clustering, Mechanism of positive and negative control of gene expression. Translational and transcriptional control of regulatory mechanism of gene expression, Environmental effects on gene regulation.

Unit-IV

Signaling at the cell surface, Types of signaling pathways that control gene activity, Integration of signals and gene controls. Moving proteins into membranes and organelles, Vascular traffic, secretion and endocytosis, Metabolism and movement of lipids.

Unit-V

Regulation of the Eukaryotic cell cycle, Cell birth, Lineage and cell death. Cancer/ oncogenes, Cell markers, Cellular morphology, Primary and established cell lines, Kinetics of cell growth, Genetics of cultured cells. Stem cell culture, embryonic stem cells and their applications. Cell culture based vaccines. Somatic cell genetics.

Practical:

- 1. Principles of microscopy and optics*.
- 2. Cell size determination
- 3. Microtomy and photography*.
- 4. Mounting of polytene chromosomes.
- 5. Preparation of mitosis in Onion root tip.
- 6. Cell division in Grasshopper testis*.
- 7. Preparation of animal tissue culture medium using membrane filtration*.
- 8. Cell counting and cell viability using trypan blue dye exclusion assay
- 9. Polyacrylamide Gel Electrophoresis of protein from animals*.

* Practical by demonstration only.

List of Suggested Reference Books:

- 1. Cell and Molecular Biology, (8th edn)., De Robertis, E.D.P. and De Robertis, E. M.F. 1995, *B.I.Waverly Pvt. Ltd.*, New Delhi.
- 2. Essential Cell Biology, B. Albert et al., 1998. Garland Publishing, Inc. New York.
- 3. Principles of Cell and Molecular Biology. (2nd edn.)., Kleinsmith, L. J. & Kish, V.M. 1995.

- 4. Molecular Biology of the Cell. (3rd edn.)., Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (eds.) 1994. *Garland Publishing*, Inc., New York.
- 5. Molecular Cell Biology (5th Edn.), H. Lodish et al., 2004. *W.H. Freeman and Company*, New York.
- 6. Molecular Biology of the gene, J.D. Watson. 1977. (3rd Edn.) W.A. Benjamin Inc. London.
- 7. An Introduction to Genetic Analysis (7th Edn.)., A.J.F. Griffths et al., 2000. W.H. Freeman & Co.
- 8. Principles of Biochemistry, A.L. Lehninger. 1984. CBS Publishers, New Delhi.
- 9. Principles of Genetics (6th Edn.)., R.H. Tamarin, 1996. *McGraw-Hill*, New Delhi.
- 10. Genes VIII, Lewin, B., 1987. Oxford University Press, Oxford, New York, Tokyo.
- 11. Molecular Cell Biology, Darvell, J. et. al., 1998 Garland Publishing iwc, New York.
- 12. Culture of Animal Cells, (4th Edition), R. Lan Freshney, 2000, Wiley-Liss.

13C

Core: III - Microbiology

Unit – I

Introduction to Microbiology – Scope of microbiology – History of microbiology – Classification of bacteria, fungi, yeast and virus. Structure and functions of bacteria and virus. Reproduction in bacteria – Transformation, conjugation, transduction. Mapping in bacterial genomes.

Unit – II

Cultivation and control of microorganism – Methods of collection of sample – methods of estimation of microorganism in soil, water and air – Isolation and identification of bacteria. Methods of sterilization and disinfection – Microbial control – Physical and chemical – techniques of pure culture – Method of cultivation of bacteria – Phases of growth – Influence of environment on bacteria – Nutritional requirements of heterotrophic bacteria.

Unit – III

Microbial Ecology: Distribution of microorganism in soil, water and air – Environmental factors influencing the distribution of microorganism – Role of microorganisms in the cycling of

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 8 of 32

nutrients – Carbon, nitrogen, phosphorous and sulphur cycle – Bacterial photosynthesis – Microbial interactions – synergism, symbiosis, commensalism and parasitism.

Unit – IV

Food Microbiology: Sources, types incidence of microorganism in vegetables, meats, poultry, seafood, milk and diary products – spoilage of food, fruits, vegetables, cereals, meat, poultry egg, seafood, caned products – Factors influencing spoilage – Methods of detection of spoilage, physical, chemical, bioassay – principles of food preservation and prevention of food spoilage – Food poisoning organism.

Unit – V

Microbial Technology: Genetic engineering of food and additives – Single Cell Protein (SCP) production – Production of organic acids (acetic acid), ethanol – Antibiotics – Microbial toxins – bacterial – Vitamins – methanogenesis – hydrogen oxidizing bacteria – Fermentation products – Degradation of protein, cellulose, pectin and chitin – Oil degrading bacteria.

Practical:

- 1. Preparation and requirements of microbiology laboratory.
- 2. Microscopy the operational uses of light microscope, preparation, use and care.
- 3. Preparation of Non-selective selective culture media.
- 4. Estimation of bacterial from soil and water using plate count or serial dilution.
- 5. Isolation of bacteria.
- 6. Observation of morphological characters of bacterial and protozoan temporary wet mount technique.
- 7. Staining methods: Preparation of smears for staining, simple staining, negative staining, gram staining.
- 8. Control of microorganism physical methods (moist and dry heat) mechanical removal methods (sterilization and filtration).

References:

- 1. Burden, K.L. and R.P. Williams (6th Ed.) 1968. Microbiology. The Macmillan Co., London P. 818.
- 2. Dawes, E.A. (Ed.) 1986. Energy conservation in bacterial photosynthesis. *In:* Microbial energetics. *Blackie & Son Ltd.*, Glasgon, 133-144pp.
- 3. Doelle, H.W. (Ed.) 1969. Fermentation acetic acid bacteria and lactic acid bacteria. In: Bacterial metabolism. *Academic Press.* New York, London. 256 351 pp.

- 4. Hay, J.M. (Ed.) 1986. Modern Food Microbiology. CBS publishers, Delhi. 622 pp.
- 5. Reed, G. (4th Ed.) 1983. Prescott & Dunn's Industrial Microbiology. AVI Publishing Co., Inc. Connecticut, 883. pp.
- 6. Roberts, T.A. and F.A. Skinner (Eds.) 1983. Food Microbiology: Advances and Prospects, *Academic Press*, Inc. London, 393 pp.
- 7. Selle, A.J. (Ed.) 1967. Fundamental Principles of Bacteriology. *Tata McGra Hill Publishing Company Ltd.*, New Delhi, 822 pp.
- 8. Shelegel, K.G. (6th Ed.) 1986. General Microbiology. *Cambridge University Press*, Cambridge, 587 P.
- 9. Steinkraus, K.H. (Ed.) 1983. Hand Book of Indigenous Fermented Food. Marcel Dekker Inc. New York, 671 P.
- Wistreich, G.A. and M.D. Lechtman, 1976. Microbiology, 3rd edition. *Macmillan Publishing Co.*, London, 786 P.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 10 of 32 **1EA** Elective: I - An Introduction to Human Cytogenetics

Unit-I

History of Human Chromosome Research - Denver Conference (1940) - Chicago Conference (1966) - Paris Conference (1971) - Nomenclature of Human Chromosome.

Unit-II

Identification of Human diploid chromosome - peripheral blood cultures - banding techniques - G-band; Q-band; C-band; R-band - Identification of 23 pairs of Human chromosomes by band position.

Unit-III

Chromosomal syndromes: Autosomal syndromes - Sex chromosomal syndromes - Structural chromosomal syndromes.

Unit-IV

a) **Prenatal diagnosis:** Chorionic villi sampling - Foetoscopy, Ultrascopy - Amniocentesis. b) **Postnatal diagnosis:** Peripheral blood leucocyte culture - Sister Chromatid Exchange - Fragile site - Mitotic index. c) **Genetic Counseling.**

Unit-V

Hereditary forms of Cancer - Oncogenes and Cancer - Chromosomes and Cancer - Cancer and the environment.

Reference Books:

- 1. Study guide for Cumming's human heredity principles and issues by Shontz, Nancy N.; Cummings, Michael R. (3rd Edition), 2000. *Pacific Grove, CA : Brooks/Cole Thomson Learning*
- 2. Genetics Medicine (1994) by Karl. H. Muench. Elsevier pb. London
- 3. Human Genetics by Elof Axel Carlson, 1984. Tata McGraw-Hill pb. New Delhi.

Unit – I

Critical examination and discussion of advances in the areas of insect biotechnology, including genetic engineering and genomics.

Unit – II

An in-depth analysis and role of insect as vectors of pathogens, or as parasites causing disease in humans (principally) and animals – mosquito transmitted diseases - The interaction of host and parasite and the dynamic nature of the epidemiological system

Unit – III

Biology of insect, viruses, bacteria, fungi, entomopathogenic nematodes and their use in insect pest/vector control.

Unit – IV

Genetic improvement of natural enemies, Insect cell line, Botanical insecticides and Neuroendocrinology - bioactive peptides.

Unit – V

Transgenic plants- role in insect control, Genetic control - Sterile (transgenic) Insect Technology (SIT).

References:

- 1. Yoshinori N & Kaya H, (1993). Insect Pathology (Academic Press) Pp. 1 666
- Ananthakrishnan, T.N (2007). Dimensions of Molecular Entomology (*University Press*). Pp. 1-162
- 3. Blissard, G.W. and Rohrmann, G.F.1990. Baculovirus Diversity and Molecular Biology. *Ann. Rev. Entomol.* 35: 127-155.
- 4. Burges, H.D. 1981. Microbial Control of Pests and Plant Diseases. Pp.949. *Academic press*. New York.
- 5. Carter, J.B.1984. Viruses as pest control agents. *Biotechnol. and Genetic Engineering Reviews*, 1: 375 419.
- 6. Cho, T., Shular, M.L. and Granados, R.R. 1989. Current Developments in New Media and cell Culture System for the Large Scale Production of Insect Cells. *Advances in Cell Culture*. 7: 261-277.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 12 of 32

- Cockburn, A.F., Howels, A.J. and Whitten, M.J. 1984. Recombinant DNA Technology and Genetic Control of Pest Insects. *Biotechnology and Genetic Engineering Reviews*, 2: 69-99.
- 8. Day, P.R. 1986. Biotechnology and Crop Improvement and Protection. *BCRC Monograph No. 34*, Pp. 24.
- 9. Hedin, P.A., Men, P.A. and Hollingsworth, R.M. (eds.) 1988. Biotechnology for Crop Protection, 471 Pp. *American Chemical Society*, Washington, DC.
- 10. Herzog, D.C. and Hoy, M.A. 1985. Biological Control in Agrl. IPM system, Pp. 5889. Academic Press, New York.
- 11. Hoy, M.A. 1985. Recent Advances in Genetics and Genetic Improvement of Phytoseiidae. *Ann. Rev. Entomol.*, 30: 343-370.
- 12. Kirschbaum, J.B. 1985. Potential Implication of Genetic Engineering and other Biotechnologies to Insect Control. *Ann. Rev. Entomol.* 30: 51-70.
- 13. Maeda, S. 1989. Expression of Foreign Genes in Insects using Baculovirus Vectors. *Ann. Rev. Entomol.* 34.
- 14. Meeusen. L. and Warren, G. 1989. Insect Control with Genetically Engineered Crops. *Ann. Rev. Entomol.* 34: 373-381.
- 15. Miller, L.K. Lingg, A.J. and Bulla, L.A. Jr. 1983. Bacterial, Viral and Fungal Insecticides. *Sciences*, 219: 715-721.

Paper: I– Evolution and Biogeography

1LA

Unit – I:

Geological time scales, fossils and fossilization, fossil histories of Invertebrates and Vertebrates, origin of protozoa, metazoa, bilateria, metamerism, symmetry, skeleton and coelom.

Unit – II:

Origin of life; theories of evolution; Neo-Lamarckism; Neo-Darwinism, micro, macro and mega evolution; morphological, taxonomical rates of evolution.

Unit – III:

Zoogeographical animal distribution, barriers, significance of island fauna, isolation and isolating mechanisms – race formation; selection natural, artificial and sexual.

Unit – IV:

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 13 of 32

Trends in Evolution channelisation of selection – mechanism of evolution. Adaptations and Coadaptations; adaptive radiations and non-adaptive characters in biology.

Unit – V:

Genetic variations - classification and origin; genetic drift mutation; Genetic assimilation and homeostasis; non-genetic variation – age, seasonal, cast density, dependent, ecological polymorphism, mimicry and animal colorations.

Recommended Readings:

- 1. Glaessner, M.F: Pre Cambrian fossils, 1965. Biol. Rev. 37: 467-494.
- 2. Stahl, V: Vertebrate History: Problems in Evolution, 1985. *McGraw Hill*, New Delhi.
- 3. Stokes, W.L: Essentials of Earth History: An Introduction to Historical Geology, 1960. *Prentice Hall* Ltd.
- 4. Colbert, E.H: Evolution of Vertebrates, 1970. John Willey and Sons, Inc. New York.
- 5. Levtrup: Phylogeny of Vertebrate, 1984. John Willey and Sons, Inc. New York.
- 6. Smith: Evolution of Vertebrate structure, 1953. John Willey and Sons, Inc. New York.
- 7. Carter, G.S: Animal Evolution, 1951. Sedgwick and Jackson, London, England
- 8. Mayer, S: Systematic and origin of species, 1942. University Press, Columbia.
- 9. Sobrig and Sobrig: Population Biology and Evolution, 1981. Addison Wiley.

Core: IV – Proteomics

23A

Unit –I

Introduction to proteomics. Study of multiprotein systems. Proteome. Life and death of a protein. Proteins as modular structures. Functional protein families. Deducing proteome from the genome. Analytical proteomics. Significance for analytical proteomics. Peptide separations. Protein extracting from biological samples. Protein digestion techniques. Proteases, Cyanogen bromide and In-gel digestion.

Unit –II

One dimensional SDS-PAGE. Two dimensional SDS-PAGE. Problems with 2D- SDS-PAGE. Ionization techniques for macromolecules. Preparative IEF. High-performance liquid chromatography. Capillary electrophoresis.

Unit –III

Mass spectrometer analysis of proteins and peptides. MALDI-TOF MS instrument. MALDI. TOF Mass analyzer. ESI Tandem MS instruments. Tandem Mass analyzers. Triple Quadrupole Mass Analyzer. Ion-Trap Mass Analyzer. Q-TOF and Fourier Transfor-Ion Cyclotron Resonance MS instruments.

Unit –IV

Protein identification by peptide Mass fingerprinting. Peptide sequence analysis and identification by Tandem Mass spectrometry. Mining proteomics. SALSA. Protein expression profiling. Identification of protein-protein interactions and protein complexes. Mapping protein modifications.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 14 of 32 Unit –V

Protein chips. SELDI. Microsequencing. Proteomics in cancer research. Proteomic analysis in pancreatic ductal adenocarcinoma and human breast carcinoma. Profiling of chemoresistant cancer cells. Proteomics in disease understanding.

Practicals:

- 1. Protein extraction and digestion from biological samples.
- 2. Liquid chromatography.
- 4. Blotting procedures.
- 6. Spot matching in 2D gels using software.
- 8. Protein modification and analysis.
- SDS-PAGE and silver staining of gels.
 2D SDS-PAGE
- 7. Protein analysis by HPLC.

References:

Protein biochemistry and proteomics by Hubert Rehm. Academic Press, Elsevier. USA, 2006. Proteomics today by Mahmoud Hamdan and Pier Giorgio Righetti. John Wiley & Sons, New Jersey, USA, 2005.

Introduction to proteomics by Daniel C. Liebler. Humana Press, Totowas, NJ, USA, 2002.

23B

Core: IV – Receptor Biology

Receptors are nature's transducers—they detect circulating hormones or substances released by nerve activity and elicit a biological response. Receptors serve fundamental roles in recognition and communication; they pervade endocrinology, enzymology and sensory physiology. Thus they provide the basic mechanism by which living things gain information about their environment and integrate the functioning of their own systems.

Unit –I

Introduction to receptor – Regulation of receptors - application of receptors in biology-Examples of receptors, Autocrine, Paracrine and Endocrine models - Action- Characterization of receptors.

Unit –II

Signal transduction mechanisms for plasma – membrane receptors- Introduction – classification – Adenylyl cyclase and cyclic AMP- Guanylyl cyclase and cyclic GMP- Ion channels controlled by G proteins - Calcium as a second messenger.

Unit -III

Receptors for Immunoglobulin- Introduction - Receptors for Immunoglobulin IgE - Nature of the IgE receptor – Function of the IgE receptor.

Unit –IV

Hormone receptors – Introduction – Mechanism of hormone action -Thyroid hormone receptors-Events elicited by hormone – receptor binding.

Unit -V

Vertebrate visual photoreceptors - Rhodopsin – Photo transduction - Nicotinic acetylcholine receptor - Structure and function - Receptor phosphorylation - Steroid receptors and membrane receptors.

PRACTICAL:

- 1. Mouse Leptin Receptor assay by ELISA
- 2. Progesterone receptor assay
- 3. Estrogen receptor assay

Books Recommended

- 1. Fundamentals of Receptor Molecular Biology By Donald Francis Hoelzl Wallach.
- 2. Molecular Biology of the Cell (4th Ed.), Albert et al.: Garland Publishing Inc., 2002
- 3. Molecular Cell Biology (5th Ed.), Lodish et al.: Freeman and Company, 2004
- 4. Biochemistry (5th Ed.), Berg et al.: Freeman and Company, 2002
- 5. Harper's Biochemistry (26th Ed.), Murray et al. Appleton & Lange, 2003.
- 6. Molecular Biology of Receptors: Techniques and Applications of Receptor Research by A.D. Strosberg
- 7. The Receptors by P. Michael Conn, Volume 1 Academic press, Inc.,
- 8. Molecular Cell Biology by Darnell J., Lodish H., Baltimore D., Freeman W.H., 1990.
- 9. Cell Biology by Kimball T.W., Wesley Publishers, 1989.

Core: V1 – Stem Cell Technology

23C

Unit-I

Stem cell concept – Properties of stem cell – Types of stem cell embryonic stem cell – Adult stem cells – Problem of differentiation.

Unit-II

Differentiation status of cells – Primordial germ cell -Skin cell - Gastrointestinal cells – Embryonic stem cell differentiation as a model to study haematopoetic and endothelial cell development.

Unit-III

Stem cell location and Classification – Neural stem cells – Stem cell niches – Germ line Epithelial and Epidermal and neural niches.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 16 of 32 Unit-IV

Uses of Stem cells - Human stem cells – Renewal of stem cells- Stem cells and Tissue engineering –Embryonic stem cells and Gene therapy - Therapeutic cloning.

Unit-V

Single-Cell PCR methods for studying stem cells – Ethical and Social consideration of Stem cell research

PRACTICALS

- 1. Preparation and requirements of Stem cell Technology laboratory.
- 2. Culture of stem cell Differentiation experiments.
- 3. Techniques on protein Nucleic acid interaction : Gel retardation assay, DNAase foot printing modification production ,Modification interference Demonstration
- 4. Single cell PCR methods for studying Stem cells –Demonstration

REFERENCE BOOKS

- 1. Embryonic Stem Cells Method and Protocols Edited by Kursad Turksen, Humana press, 2002.
- 2. Stem Cell Century, Law and Policy for a Breakthrough Technology Russell Korobkin and Stephen R. Munzer, Yale University Press (2007).
- 3. Essential of Stem cell Biology, Robert Lanza (Eds.) Elsevier press, (2005).
- 4. Hand Book of Stem Cells Volume 1&2, Robert Lanza (Eds.), Elsevier press,(2004).
- 5. Stem Cells and the Future of Regenerative Medicine by Committee on the Biological and Biomedical Application of Stem Cell Research, (2004).
- 6. **Stem cells**, scientific progress and Future Research Direction by National Institutes of Health, (2000).

Unit-I

Introduction to the eukaryotic invertebrate genome: From genes to genomes: the emergence of genome studies – Historical background and medical importance of Aedes aegypti and *Anopheles gambiae* - **Gene structure and expression** – Pol II genes: proteins and small nuclear RNA – Pol I genes: ribosomal RNA – Pol III genes: 5S RNA, tRNA and small cytoplasmic RNA – Pseudogenes and processed genes.

Genome organization of Insects: Cytogenetic organization – Genome size and other physical properties – chromosomal organization – sex – chromosome evolution. **Genetic elements and sequence level organization**: Genes and other low copy sequences – Moderate to highly repetitive sequences - Highly repetitive elements.

Unit-II

Genetic mapping: Morphological and resistance markers – Biochemical markers – Polymorphic DNA markers – Linkage disequilibrium – Quantitative trait loci (QTL) mapping – The *Aedes aegypti and Aedes gambiae* linkage map.

Physical mapping: Low resolution mapping – High resolution mapping – The *Aedes aegypti* and *Aedes gambiae* physical map – Transformation systems in mapping – Correlation of genetic and physical maps.

Molecular systematic, evolution and genetics of insect populations: Insect molecular systematic and evolution: Taxonomy/Systematic – evolution – application in integrated pest management (IPM). **Molecular genetics**: Molecular tools for examining populations structure – Case studies – Present and future applications.

Unit-III

Improving virulence of biological control agents of pest insects: Host- specificity and alternative host ranges – Strain selection – Genetic engineering of biological control agents – Applications in IPM. **Transfection of plants with insecticidal genes for control of crop pest insects**: Vectors – Applications for plant improvement – Applications in IPM. **Molecular mechanisms for pesticide resistance**: Review of literature – Molecular mechanisms – Applications in IPM. **Sex determinations in insects**: Molecular basis for sex in *Drosophila melanogaster*. General model for sex determinations in insects. Meiotic drive, cytoplasmic distorters and hybrid sterility.

Unit-IV

Insect vector competence of pathogens: Biology – Pathogen genetics – Vector genetics. **Developmental biology and gene manipulation in** *Drosophila* **and other insects**: A guide to *Drosophila* development – Dissecting development with mutants – other insects.

Unit-V

Molecular genetics of insect behaviour: Insect central nervous system – Analysis of behaviour by traditional methods and molecular methods – Mapping genes of complex Behaviour. **Transgenic insects**: Transformation methodologies – Transformation targets.

REFERENCE:

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 18 of 32

- 1. Comprehensive molecular insect science by Gilberts, L. I., Iatrou, Gill.
- 2. Insect molecular genetics by David Haymer.
- 3. Dimensions of molecular entomology by T. N. Anandha Krishnan.
- 4. Molecular biology of Insect Disease Vectors by Canpton.
- 5. Insect molecular genetics by Maregoies Hoy.
- 6. Insect molecular biology by Inada, M., Field and David, A.O. Brochta.

2GS Supportive: II - Crustacean Aquaculture and Technology

Learning objectives:

- To develop skills and acquire knowledge to be able to understand different aquaculture systems consisting of common and high demanded crustacean species and their culturing techniques, the relationship between successful aquaculture and environmental stewardship.
- To provide an opportunity for underpinning of sustainability (the environment, culture ability and economic viability of culture operations).
- Specifically, this paper will help to learn how aquaculture supports production of representative species on socio-economic perspectives, conservation, and for various other purposes.
- To learn about the interrelationship between culture operations and the natural environment, specifics on culture of selected species.

Unit-I

Importance of fisheries and aquaculture - Current issues regarding sustainability of aquaculture - Ecological and social aspects of aquaculture development - Nutritional value of crustaceans as food.

Unit-II

Taxonomy of crustaceans – Live feeds (Algae and algal culture, Micro-invertebrate culture (Rotifers, *Artemia*, Copepod etc.) - Artificial feeds - Aquaculture and Techniques (semi-intensive, intensive, hyper-intensive).

Unit-III

Brooding (selective breeding, "specific pathogen free") - The hatchery technology and prawn seed production.

Unit-IV

Culture and Grow-out technology for commercially important crustaceans: freshwater prawns, marine shrimps, freshwater crayfish, lobsters, and crabs.

Unit-V

Nutritional requirement and feeding strategies - Water quality management and maintenance of sanitation - Pathology and quarantine - Post-harvest handling and marketing.

List of Suggested Reference Books:

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 19 of 32

- 1. Palaemonid Prawns, K.V. Jayachanadran, 2001, Science Publishers, Inc., USA, UK.
- A Text Book of Fish, Fisheries and Technology, K.P. Biswas. M.Sc., Ph.D. F.Sc. (Bombay) E.F. (West Germany), 1992 published by *Smt. Manju Biswas*, Neral Main Road Goria, Calcutta.
- Fish & Fisheries of India, V.G. Jhingran, Director, Central Inland Fisheries Research institute, Barrackpore (W.B.), 1982 published by *Hindustan Publishing Corporation* (India) 6 UB, Jawahar Nagar, Delhi.
- 4. Biotechnology and Genetics in Fisheries and Aquaculture by A.R. Beaumont and K. Hoare, Blackwell Science (2003).
- 5. Production of Meal, Oil and Protein-Vitamin Preparation in Fishing Industries, Kuli Kev, *Oxford & IBH.* (2000)
- 6. Prawn Culture by C.V. Kurian and M.J. Sebastian, 1976.
- 7. Limnological Methods by Adoni et. al., 1985. McGraw Hill Book Co.,. Inc, New York.
- 8. Freshwater Aquaculture in India Srivastava et. al., 1993. Oxford and IBH Publishing, New Delhi.
- 9. A Manual of Freshwater Aquaculture Santhanam et. al., 1996.
- 10. Marine Fishes in India D. V. Bal & K. Birabhadra Rao, 1968. Tata McGraw Hill Publishing Company Ltd. New Delhi.
- 11. The Marine and Freshwater Plankton Charles, C. David, 2001. Michigan State University Press.

2LA

Paper: II - Wildlife Biology and Conservation

Unit – I

Biogeography of India and patterns and distribution of ecosystems, ecological succession, biotic and abiotic factors of an ecosystem with special reference to tropical rain forests. Taxonomy of common Indian wild animals of reptilia, aves and mammalia. Geography of India and the pattern of distribution of fauna and flora.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 20 of 32 Unit – II

Natural history of wild life; population patterns, habits, habitats, habitat selection, resting behaviour; nutritional and reproductive strategies of common wild animals such as the calotes, poisonous and non-poisonous land and water snakes; crocodiles, birds of prey and other insectivorous, frugivorous, nectivorous and seed feeding birds, wild mammals of the Indian region.

Unit – III

Social behaviour such as aggregation, sexual behaviour, migration and territorial behaviour in birds and mammals; means of dispersal and barriers of dispersal, group size and spacing carrying capacity.

Unit – IV

Wildlife conservation: Extermination and extinction, endangered species; effects of environmental degradation on wildlife and its conservation; administrative regulations, laws and their applications in Zoological parks, wild life sanctuaries and Biosphere reserves.

Unit – V

Wild life management; Tropic structure of wildlife, common diseases of wildlife; Wild life sanitation, management of wildlife, Zoo planning and management and tourism development in wild life sanctuaries.

Recommended Readings:

Dasmann, R.F. 1982. : WildLife Biology, Wiley eastern Ltd. New Delhi. Krishnan, M: India's WildLife, 1972. Bombay Natural His. Soc. Mani, M.S. : Ecology and Biogeography of India, 1974. Junk. Publ. The Hague. Giler, R.F. : WildLife Management and Techniques, 1971. WildLife Soc. Stracey, P.D. : WildLife in India - Conservation and Control, 1963. Ministry of Agriculture Govt. India. Hind, R.A.: Animal Behaviour, 1966. McGraw Hill, New York. Stillwell, F.: The wards of WildLife, 2004. W.W.F. Seber, G.A.F.: The estimation of animal abundance and related parameters, 1973. Chapman and Hall. Gee, E.P. : The WildLife of India, 1964. Colling London. Puri, G.S.: Indian Forestry Ecology, 1984. Oxford Book House. Calcutta. Leopold, A. : Game Management, 1933. *Charles Scribers Press*, New York. Keith, Lloyd, B.: Wildlife's ten years cycle, 1979. Univ. of Wisconsin Press, Madison. David, L. : The natural regulation of animal numbers, 1979. Oxford, *Clarendon Press*. Leopold, A.: A Sand country Almanac, 1987. Oxford University Press, N.Y. 33A **Core: VII- Nanobiotechnology**

Unit- I

Introduction to Nanobiotechnology - Biominaralised inorganic Nanomaterial- Biocompatible devices - Implant coating – stents and seeds –Structure and process of biomolecules for functional materials- Bioelectronics in Medical applications.

Unit- II

Introduction to protein based Nano structure- Protein pattering and application in bio materials and Bio devices DNA based Nano structures - fabrication properties and application.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 21 of 32 Unit- III

Nanoanalysis - Nano particle molecular labels - Polymers nanofibres and their applications in bioengineering – Functional polymers for bone tissue engineering applications-Applications of nanotechnology in tissue engineering

Unit- IV

Microfluidics - Devices and their importance for Nanobiotechnology- Advantages of Microfluidics Devices - Concepts for Microfluidics Devices - Materials for Microfluidics components - Fluidic Structures.

Unit- V

Bio medical applications - Bio active Nano material in bone crafting and tissue engineering – Inorganic / polymers Nanocomposites for dental restoration and bone replacement application-Biosensors – Drug delivery –Neuro electronic interfaces – Protein engineering – Nanoluminescent tags.

PRACTICALS

- 1. Protein Micro array –Demonstration
- 2. Quantum dots-Demonstration
- 3. DNA micro array- Demonstration.
- 4. Materials for the manufacture of Microfluidics components-silicon-glass- polymers-Fluidic structure and fabrication methods –Demonstration.

REFERENCES

- 1. K.K.JAIN 2006, Nanobiotechnology in Molecular Diagnostics: Current Techniques and Applications Horizon Biosciences.
- 2. MARK RATNER and DANIEL RATNER 2005, Nanobiotechnology a Gentle Introduction to the Next Big Idea, Pearson Education.
- 3. CHALLA S.S.R. KUMAR (Ed). 2006. Biological pharmaceutical Nanomaterial. Wiley-VCH Verlag Gmbh & Co, KgaA.
- 4. NIEMEYER, C.M., MIRKIN, C.A. (Eds.).2004. Nanobiotechnology Concepts, Applications and Perspectives, Wiley-VCH, Weinheim.

33B

Core: VIII- Immunotechnology

Unit - I

Introduction to Immune system; cellular and humoral immunity; complement; molecular basis of immune diversity. Host –parasite interaction; Immunity and infection: Immunity to bacteria, virus, protozoa, fungi and tumor.

Unit - II

Antigens and antigenicity. Polyclonal and monoclonal antibody production and purification. Conjugation of antibody with enzymes, fluorochrome and toxin. Humoral immune response and cell mediated immune response.

Unit - III

Immunity to infections. Immunological techniques: RIA, ELISA, immunocytochemistry, Immunofluorescence and Immunoblotting.

Unit - IV

Fluorescence antibody techniques, flow cytometry, fluorescence in situ hybridization. Immunopathology and immunological disorders.

Unit - V:

Principles and methods of vaccine preparation – Edible vaccines. Antibody engineering and structure. Cytokines and immunotherapy.

PRACTICAL:

- 1. Media preparation and animal cell culture.
- 2. Primary cell culture establishment from tissue.
- 3. Antibody development and purification.
- 4. ELISA
- 5. Western Blot.
- 6. Immunofluorescence.
- 7. RIA
- 8. Mounting of Spleen and Bone Marrow Cells
- 9. Lymphoid organs in Rat.
- 10. Differential counting of human WBC
- 11. Demonstration of Antigen Antibody by interfacial ring test / blood grouping culture.

REFERENCE:

- 1. Immunology, S.K. Gupta (1999). Narosa Publishing House, New Delhi.
- 2. Essential Immunology (8th Edition), Ivan Roitt, 1994. *Blackwell Scientific Publication*. Immunology W.H. Freemen and Company.
- 3. Abdul .K. Abbas. Andrew .K. Litchmen and Jordan, 1997, Cellular and Molecular Immunology, 3rd Edn. *W.B. Saunder Company*.
- 4. Weir, D.M. and Stewart, J., 1997, Immunology, 8th Edn., Churchill Livingston, New York.
- 5. Eryl Liddell and Ian Weeks., 1995, Antibody Technology, BIOS Scientific Publishers.
- 6. Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts and James D. Watson.(Eds.), 1994, Molecular Biology of the cell, 3rd Edn., *Garland Publishing Inc.*, New York.
- 7. Immunology, George Pinchuk (2004). *Tata McGraw-Hill Publishing Company Limited*, New Delhi.

Core: IX- Genetic Engineering

Unit-I

33C

Outline process of genetic engineering and recombinant DNA technology, Isolation of genes, Concept of restriction and modification - Restriction endonucleases, DNA modifying enzymes, Ligases. Host-vector system - Cloning vectors for *E. coli.*, Cloning vectors for Eukaryotes.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 23 of 32

Different Kinds of Vectors - Plasmids, Phage vectors, Cosmids, Phagemids, Virus vectors, Shuttle vectors and expression vectors.

Unit-II

Isolation and purification of DNA from animal cells, DNA sequencing and sequence analysis, Synthesis of gene, DNA finger printing, Different strategies of cloning, Direct and vector mediated gene transfer, Ligation strategies, Genomic libraries, cDNA libraries, Gene tagging, Expression of cloned genes, Isolation and purification of the expressed product. Site-directed mutagenesis. PCR technology, its principles and application. Molecular marker technology, Promoters and Operon systems. DNA forensics, DNA finger printing and paternity decisions.

Unit-III

Micro manipulation and cloning, Somatic cell cloning, Identification and isolation of genes of economic importance, Gene mapping, Transgenesis for animal improvement and production of animals as bioreactors for proteins of pharmaceuticals value, Gene transfer in fish, Expression of animal genes in bacteria, Biohazards and safeguards of genetic engineering.

Unit-IV

Conventional methods of animal improvement, predominantly selective breeding and crossbreeding. Embryo biotechniques for augmentation of reproductive efficiency and faster multiplication of superior germ plasm. Super ovulation. Oestrus synchronization. Embryo collection, evaluation and transfer. *In vitro* maturation of oocytes. *In vitro* fertilization and embryo culture. Embryo preservation, Embryo sexing.

Unit-V

Genetic diversity, Molecular taxonomy, Species and population biodiversity, Biodiversity and centers of origins of animals, Conservation of animal genetic resources, Morphological and molecular characterization of biodiversity. Bio-safety in relation to transgenic research and applications.

Practical:

- 1. Preparation of plasmid DNA and genomic DNA from *E.coli*.
- 2. Preparation of genomic DNA from animals/ human.
- 3. Agarose gel electrophoresis of plasmid and genomic DNA.
- 4. Restriction mapping of plasmid DNA.
- 5. PCR amplification, RFLP*.
- 6. Vector preparations*.
- 7. Insert preparations*.
- 8. Ligation*.
- 9. Transformation of *E. coli* with plasmid DNA using CaCl₂ *.
- 10. Isolation of the recombinant plasmid*.
- 11. Preparation of cDNA using RT-PCR*.
 - * Practical by demonstration only.

List of Suggested Reference Books:

1. Genetics (3rd Edition), Strickberger, M.W. 1996, *Printice Hall*, India Ltd., New Delhi.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 24 of 32

- 2. Molecular Biology of the Cell (3rd Edition), Alberts, B. et. al., 1994, *Garland Publishing Inc.*, New York.
- 3. Genes VIII. Levine, B., 2004, Oxford University Press.
- 4. Genetics: Analysis of Genes and Genomes (5th Edn.), Hartl, D.L. & Jones, E.W., 2001, *Jones and Bartlett Publishers*, Sadbury, Massachusetts.
- 5. Gene Cloning and DNA Analysis, (5th Edn.)., T.A. Brown, 2001, *Blackwell Science Ltd.*,
- 6. Genetics. The Continuity of Life, D.J. Fairbanks & W.R. Andersen, 1999. *Books/ Cole Pub. Company*.
- 7. An Introduction to Genetic Analysis (7th Edn.)., A.J.F. Griffths et al., 2000. W.H. Freeman & Co.
- 8. Principles of Genetics (6th Edn.)., R.H. Tamarin, 1996. WCB/ McGraw-Hill, New Delhi.
- 9. Genetic Engineering, Boyer.H.W and Nicosia. S. 1978. *Elsevier/North Holl and Biomedical Press*, Amsterdam
- 10. Genetics of Industrial Microorganism, Seberk, O.K and Laskin, A.I., 1979. American Society of Microbiology, Washington.
- 11. Principles of gene manipulation, 3rd Edn., Old & Primrose, 1989, *Publishers Business Service*.
- 12. Recombinant DNA Technology, (2nd Edn.), J.D. Watson, M. Gilman, J. Witkowski & M. Zoller, 1992. *Scientific Americans Books*, New York.
- 13. Molecular Biotechnology, S. Maulik and S.D. Patel, 1997, Wiley. Liss
- 14. r DNA technology and Biotechnology, K. Kreuzer & A. Massey, 1996, *ASM Press*, Washington. D.C
- 15. Dealing with genes, D. Berg & M. Singer, 1992, Blackwell Scientific Publication.
- 16. Molecular Biotechnology, B.R. Glick & J.J.Pasternak, 1994, ASM Press, Washington
- 17. Techniques for Engineering Genes, Butterworth. Heinemann, 1993, Open Universities Nederland.
- 18. Methods in Gene Biotechnology, W. Wu, M.J. Welsh, P.B. Kaufman & H.H. Zhang, 1997, *CRC Press*, New York.

3EA

Elective: III – Ecobiotechnology

This course provides the application of biotechnology to solve environmental problems like pesticides, metals, industrial effluents, solid waste, acid rain, global warming, ground water contamination etc., by environmental quality evaluation, monitoring, and remediation of contaminated environments. This course also provides detailed knowledge of environmental biology and pollution.

Unit – 1

Introduction: Ecology and Ecosystem, Environmental bcotechnology, Scope and importance, Current status, Future. **Environmental pollution**: Origin, Types, Air, Water, Soil, Noise and Thermal, their sources and effects.

Unit – 11

Sewage and waste water treatment: Introduction, Aerobic and anaerobic treatment, Conventional and advanced treatment technology, Use of microorganisms, Bioreactors, Use of immobilized enzymes.

Unit – III

Solid waste management: Introduction, Impact on global climate change, E-waste, Landfills, Composting, Earthworm treatment.

Unit – IV

Hazardous waste management: Introduction, Xenobiotics compounds, Hazardous waste, Biodegradation of xenobiotics compounds, Organisms involved in degradation of xenobiotics.

Unit – V

Novel methods for pollution control: Introduction, Vermitechnology, Application of environmental genetics and Aiming for biodegradable and eco-friendly products.

Text Books:

- 1. Fundamentals of Ecology by Eugene P. Odum, 1972, W.B. Saunders Company, London
- Environmental Pollution by Hodges, L., 1977. *Holt, Reinhart Publishers*, USA. Environmental Pollution and Control by Jeffrey Peirce, J., Aarne Vesilind, P. and Ruth Weiner, 1997, *Elsevier*, The Netherlands.
- 3. APHA Standard Methods for the Examination of Water and Waste Water, 14th Education, 1985. American Public Health Association., Washington, USA.
- 4. Environmental Biotechnology by C. F. Forster and D. A. J. Wase, 1987. *Ellis Horwood Limited*, England
- 5. Environmental Microbiology by W.D. Grant and P.E. Long, 1985. Blakie Glasgow, London.
- 6. Industrial Microbiology by Casida, 1994, Wiley Eastern Publishers.
- 7. Microbial Gene Technology by H. Polasa, 1991. South Asian Publishers, New Delhi.

3GS

Supportive: III – Marine Biotechnology

Unit-I

Basics of Aquaculture: Introduction to Biotechnology scope and its utility in Aquaculture - Indian and World Aquaculture-Role, Status and Importance of Aquaculture, Marine ornamental fishes of India.

Unit –II

Molecular Aspects of Growth and Reproduction in Aquatic Organisms: Gene sequence analysis and functions of Moult Inhibiting Hormone – Vitellogenesis Inhibiting Hormone - Mandibular Organ Inhibiting Hormone – Gonadotrophic Hormone I & II – Induced spawning – Ovaprim – Applications. GH Transgenic Fish - Embryonic Stem Cell Technology – Morpholino based gene knock down technology – Homologous Recombination and chimera formation – Nuclear Transfer Technology- Fish genetics and Bioinformatics

Unit-III

Marine Biodiversity: Marine Biodiversity - Defining and Measuring diversity, molecular methodologies - Maintenance of biodiversity and Conservation -Application-Marine food web dynamics - Primary, secondary and tertiary Production.

Unit – IV

Principles of Oceanography: Living resources of Indian sea - Application of ocean remote sensing, salinity and density-Horizontal, Vertical and temporal variations - Winds and general

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 26 of 32

oceanic circulation - Marine food analysis - Spilage, quality control, ISO standard keeping export in consideration –Biodegradation.

Unit-V

Marine Biotechnology and its Potential: Probiotics bacteria and their importance in aquaculture – PCR and other techniques for identification of bacterial and viral pathogen in aquaculture- Vaccines for aquaculture – Marine virology - Cryopreservation technique-application of cryopreservation in aquaculture - Applied genetics of cultivated fishes – Commercial enzymes from marine microorganism – Marine organism as a source of polysaccharides - Marine food.

REFERENCES

- 1. Biological Oceanography, (1999) Lalli, C.M.
- 2. Textbook of Marine Ecology (1989) Nair, N.B and Thampis
- 3. An Introduction to Marine Sciences (1988). Medius, P.S & Campell, J. J.
- 4. General Oceanography- An introduction (1980) Sielder, G.
- 5. Drugs from Sea (2000). Fusetani, N.
- 6. Recent Advances in Marine Biotechnology.Vol.2 (1998) Nagabhushan.R
- 7. Biotechnology and Biodegradation (1990), D. Chakaraborthy.
- 8. Chemical Oceanography (1992). Millero & Saha, M.C.
- 9. Methods of Seawater Analysis (1995). Grasshoff.K., Erhardt & Kremling

3LA

Paper: III - Animal Biodiversity

UNIT I - BIODIVERSITY; SPECIES CONCEPTS; ANIMAL DIVERSITY

What is Biodiversity? - Components of Biodiversity (Ecosystem, Genetic and Species diversity) - Assigning values to biodiversity - Species concepts - **Animal diversity**: (Distribution, inventory, species richness) - Biodiversity Hotspots (Western Ghats, Indo-Burma region).

UNIT II - LOSS OF ANIMAL DIVERSITY, STATUS OF SPECIES

Extinctions: Past rates of Extinctions - Concepts of Island biogeography and extinction rates on Islands - Human induced, Modern and local extinctions - Population reduction-threats to wildlife (examples)- Habitat loss, degradation and fragmentation. Threats to animal diversity in India - **Status of species**: Rare, endemic and threatened species - Measuring status of species in the wild - IUCN Red list (Assessments and methodologies) - Status of Indian animals.

UNIT III - CONSERVATION: TOOLS IN ANIMAL CONSERVATION

What is conservation biology? - *In situ* and Ex *situ* conservation of Indian animals (Case studies) - Population management -Project Tiger and Elephant - Captive breeding programme - peoples participation in conservation - Successes and failures of conservation actions in India (Case study) -Tools in Conservation: Interpretation of various data on wildlife - GIS - remote sensing - Landscape model – PVA and CAMP processes.

UNIT IV - ANIMAL LAWS AND POLICIES IN INDIA; ECONOMICS OF BIODIVERSITY CONSERVATION

Wildlife (Protection) Act of India (1972) - Protected Area network - forest policy - Prevention of cruelty to Animal Act - Convention on Biological diversity, International Trade in endangered species - Zoo policy- Laws and their applications in Zoological parks, wildlife sanctuaries and biosphere reserves - Economics of biodiversity conservation.

UNIT V - CONSERVATION EDUCATION AND AWARENESS

Wildlife / Animal magazines, Journals- How to write popular and Scientific articles - Magazine and Journal information - Wildlife, nature, environment games (examples) – Role of NGO's and Government organizations in wildlife conservation - Wildlife celebration days in India - Biotechnology in conservation.

Selected References:

- 1. R. B. Primack 1993. Essentials of Conservation Biology, Sinauer Associates, USA
- 2. G. K. Meffe and C. R. Carroll 1994. Principles of Conservation Biology, Sinauer Associates, USA
- 3. B. Groom bridge 1992. Global Biodiversity. Status of the Earth's Living Resources. Chapman and Hall, London.
- 4. R. A. Mittermeier, N. Meyers, P.R. Gil and C. G. Mittermeier 2000. Hotspots: Earth's Biologically richest and most endangered Terrestrial Ecoregions. Cemex/Conservation International, USA
- 5. R. A. Mittermeier, P.R. Gil and C. G. Mittermeier 1997. Megadiversity: Earth's Biologicals Wealthiest Nations, Cemex, SA
- 6. M.E. Soule 1986. Conservation Biology: The Science of Scarcity and Diversity, Sinauer Associates Inc., USA.
- 7. M. L. Reaka Kudla, D. E. Wilson and E. O. Wilson 1997. Biodiversity II: Understanding and Protecting our Biological Resources. Joseph Henry Press, Washington, DC.
- 8. T. W. Clark, R. P. Reading and A.L.Clarke 1994. Endangered Species Recovery: Finding the Lessons, Improving the process. Island Press, Washington, DC.
- 9. Anon. 1992. Convention on Biological Diversity Text and annexes. World Wide Fund for Nature India.
- 10. http://www.redlist.org
- 11. W. V. Reid and K.R. Miller 1989. Keeping options Alive. World Resources Institute.
- 12. Anon. 1997. Wildlife (Protection) Act of India, Nataraj Publishers, Dehradun
- 13. K. J. Gaston 1996. Biodiversity: Biology of numbers and Difference. Blackwell

Core: X- Bioinformatics and Genomics

Unit-I

43A

Biological Sequence Databases: Overview of various primary and secondary databases that deal with protein and nucleic acid sequences. Databases to be covered in detail are GenBank, EMBL, DDBJ, SwissProt, PIR and MIPS for primar6y sequences. Various specialized databases like TIGR, Hovergen, TAIR, PlasmoDB, ECDC etc., will also be discussed. Preliminary ideas of query and analysis of sequence information.

Unit – II

Sequence comparison Methods: Method for the comparison of two sequences viz., Dot matrix plots, NeedlemnanWusch and SmithWaterman algorithms. Analysis of computational complexities and the relative merits and demerits of each method. Theory of scoring matrices and their use for sequence comparison.

Unit – III

Database Search Algorithms: Methods for searching sequence databases like FAST and BLAST algorithms. Statistical analysis and evaluation of BLAST results. Coordinates, lines and increments, function, shifting graphs, trigonometric functions.

Unit – IV

Pattern Recognition Methods in Sequence Analysis: Concept of a sequence pattern, regular expression based patterns. The use of pattern databases like PROSITE and PRUNTS. Concept of position specific weight matrices and their use in sequence analysis. Theory of profiles and their use with special reference to PSIBLAst. Markov chains and Markov models and their use in gene finding. Concept of HMMS, the Forward backward and the Viterbi algorithm. The BaumWelch algorithm for training a HMM. Use of profile HMM for protein family classification.

Unit – V

Genomics, Computer Graphs and Molecular Modeling: Genomics – Structural genomics – sequencing and sequence analysis software like GCG, etc. Functional genomics – gene finder etc. Gene knockouts in animals – Gene therapy: Somatic and germ line gene therapy in vivo and exvivo – Design of SiRNA vectors and Gene silencing.

Computer Graphics – Creation of recombinant molecules - Virtual analysis of biomolecules using vector NT, DNA star etc.,

Molecular modeling: Modeling of different macromolecules and structural analysis using hyperchem etc.,

Practical:

- 1. Internet Basics
- 2. Retrievals.
- 3. Molecular Dissection.
- 4. Gene Finding.

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 29 of 32

- 5. Similarity Search.
- 6. Write Programs.
- 7. Cloning.

References:

- 1. Bioinformatics A beginner's guide by Jean-Michel Claverie and Cedric Notredame, Wiley - Dream Tech India Pvt. Ltd.
- 2. Developing Bioinformatics Computer Skill by Cynthia Gibas and Per Jambeck, O' Reily publication.
- 3. Introduction to Bioinformatics by T.K. Attwood and D.J. Parry-Smith, Perarson Education Asia.
- 4. Bioinformatics by David. W. Mount, CBS Publishers and Distributors.
- 5. Instant notes in bioinformatics by D.R. Westhead, J.H. Parish and R.M. Twyman.
- 4LA Paper: IV Practical (Evolution and Biogeography, Wildlife

Biology and Conservation and Animal Biodiversity)

I. Evolution and Biogeography:

Fossils Characteristics and identification:

- 1. Coelenterate Coral (Carboniferous)
- 2. Arthropoda Trilobite (Silurian)
- 3. Mollusca Lamellibranch (Recent)
- 4. Mollusca Gastropod (Tertiary)
- 5. Mollusca Ammonite (Jurassic)
- 6. Echinodermata Crinoid (Carboniferous)
- 7. Echinodermata Echinoid (Jurassic)
- 8. Vertebrata Shark's tooth (Miocene)

Fossil specimens:

Fish vertebra, dextral snail, sea urchin fossil braciopos fossil, animal tooth fossil, fossil of fish, fossil cast of archaeopteryx lithographica, fossil cast of trilobite and fossil of pecton.

II. Wildlife Biology and Conservation & Animal Biodiversity:

- 1. Inventories/Surveys.
- 2. Field Techniques.
- 3. Identification and use of keys Reference specimen.
- 4. Collection and preservation.
- 5. Introduction to computerized techniques Remote sensing CAMP and GIS and their modules for conservation.
- 6. IUCN Red List Exercise and PVA modeling.
- 7. Statistical analysis/interpretation.
- 8. Technical writing and reporting of field studies.
- 9. Public presentation.
- 10. Field Project/ Report Visit to Zoological parks, wildlife sanctuaries and biosphere reserves.

Practical Components:

The M.Sc. Animal Biotechnology Practical Examination having the following Marks:

Time: 1.20 minutes	Maximum Marks – 25					
Major Practical Spotters Record	2x5 = 10 Marks 5 Marks					
	Total 25 Marks					

Theory Components:

The M.Sc. Animal Biotechnology Theory Examination having the following Marks.

Core Papers: Maximum Marks - 75

Internal: 15 Marks

Test - 5 Marks Assignment - 5 Marks Seminar - 5 Marks

External: 60 Marks

Part A - 10x1=10 Marks (Question No. 1 to 10)

Answer all questions. All questions carry equal marks.

Example:

- 1. Define.
- 2. Multiple Choice Questions
- 3. True or False
- 4. What are the natural processes of extinction?

Part B – 5x4 = 20 Marks (Either or type – Question No. 11 to 15)

Answer all questions. All Question carry equal marks. Each answer should not exceed 2 pages.

Part C – 5x6 = 30 Marks (Either or type – Question No. 16 to 20)

Answer all questions. All Question carry equal marks. Each answer should not exceed 4 pages.

Elective Papers: Maximum Marks - 100

Internal: 40 Marks

Test - 20 Marks

Anx.27 D - M.Sc. Animal Biotech (CBCS) 2007-08Page 31 of 32 Assignment - 10 Marks Seminar - 10 Marks

External: 60 Marks

Part A – 10x1=10 Marks (Question No. 1 to 10)

Answer all questions. All questions carry equal marks.

Example:

- 1. Define.
- 2. Multiple Choice Questions
- 3. True or False
- 4. What are the natural processes of extinction?

Part B – 5x4 = 20 Marks (Either or type – Question No. 11 to 15)

Answer all questions. All Question carry equal marks. Each answer should not exceed 2 pages.

Part C – 5x6 = 30 Marks (Either or type – Question No. 16 to 20)

Answer all questions. All Question carry equal marks. Each answer should not exceed 4 pages.

Supportive Papers: Maximum Marks - 50

Internal: 20 Marks

Test - 10 Marks Assignment - 5 Marks Seminar - 5 Marks

External: 30 Marks

Part A – 6x1=6 Marks (Question No. 1 to 6)

Answer all questions. All questions carry equal marks.Example:1. Define.2. Multiple Choice Questions3. True or False4. What are the natural processes of extinction?

Part B – 3x3 = 9 Marks (Either or type – Question No. 7 to 9)

Answer all questions. All Question carry equal marks. Each answer should not exceed 2 pages.

Part C – 3x5 = 15 Marks (Either or type – Question No. 10 to 12)

Answer all questions. All Question carry equal marks. Each answer should not exceed 4 pages.

Practical Components:

The Diploma in Animal Biodiversity and Conservation Practical Examination having the following Marks:

Total Marks: 100	
Internal: 40 Marks	Time: 1.50 minutes
Major Practical Minor Practical Spotters (A & B) Record	15 Marks $10 Marks$ $2x5 = 10 Marks$ $5 Marks$
	Total 40 Marks
External: 60 Marks	Time: 3.00 Hrs.
Major Practical Minor Practical Spotters (A, B, C, D and E) Record	1x20 = 20 Marks 12x10 = 10 Marks 4x 5 = 20 Marks 10 Marks
	Total = 60 Marks

Theory Components:

The Diploma in Animal Biodiversity and Conservation Theory Examination having the following Marks.

Internal: 40 Marks

Test - 20 Marks Assignment - 10 Marks Seminar - 10 Marks

External: 60 Marks

Part A – 10x1=10 Marks (Question No. 1 to 10)

Answer all questions. All questions carry equal marks.

Example:

- 1. Define.
- 2. Multiple Choice Questions
- 3. True or False
- 4. What are the natural processes of extinction?

Part B – 5x4 = 20 Marks (Either or type – Question No. 11 to 15)

Answer all questions. All Question carry equal marks. Each answer should not exceed 2 pages.

Part C – 5x6 = 30 Marks (Either or type – Question No. 16 to 20)

Answer all questions. All Question carry equal marks. Each answer should not exceed 4 pages.