BHARATHIAR UNIVERSITY, COIMBATORE-641 046

B.Sc. PHYSICS WITH NANO TECHNOLOGY & COMPULSORY DIPLOMA IN INSTRUMENTATION

SCHEME OF EXAMINATIONS (CBCS PATTERN)

(For the students admitted during the academic year 2008-2009 and onwards)

			_	Exam				
Part	Study Components	Course Title	Ins. hrs week	Dur.Hr	CIA	Marks	Total Marks	Credit
	Semester I							
Ι	Language-I		6	3	25	75	100	3
II	English-I		6	3	25	75	100	3
III	Core I – Heat	and Thermo Dynamics	3	3	25	75	100	4
III	Core II – Mec	hanics, Properties of Matter and Sound	3	3	25	75	100	4
III	Major Practical	Ι	3	-	-	-	-	-
III	Allied A - Math	nematical Paper I * (or)	7	3	25	75	100	5
	Cher	nistry Theory I **	4	3	20	55	75	4
III	Allied Practical ³	**	3	-	-	-	-	-
IV	Environmental S	Studies #	2	3	-	50	50	2
	Semester II							
Ι	Language-II		6	3	25	75	100	3
II	English-II		6	3	25	75	100	3
III	Core III – Elect	ricity and Magnetism	6	3	25	75	100	4
III	Major Practical	Ι	3	3	40	60	100	3
III	Allied A - Math	nematical Paper II * (or)	7	3	25	75	100	5
	Cher	nistry Theory II **	4	3	20	55	75	4
III	Allied Practical	**	3	3	20	30	50	2
IV	Value Education	n - Human Rights #	2	3	-	50	50	2
	Semester III							
Ι	Language-III		6	3	25	75	100	3
II	English-III		6	3	25	75	100	3
III	Core IV – Optio	28	4	3	25	75	100	4
III	Major Practical		2	-	-	-	-	-
III		ematical Paper I * (or)	7	3	25	75	100	5
	Cher	nistry Theory I **	4	3	20	55	75	4
III	Allied Practical ³		3	-	-	-	_	-
IV	Skill Based Sub	ject 1 (Diploma) Instrumentation I	3	3	25	75	100	3
IV		nced Tamil# (OR) ive - I (Yoga for Human Excellence)# /	2	3	7	5	75	2
L		*						

	Semester IV						
Ι	Language-IV	6	3	25	75	100	3
II	English-IV	6	3	25	75	100	3
III	Core V – Atomic Physics and Nuclear Physics	4	3	25	75	100	4
III	Major Practical II	2	3	40	60	100	3
III	Allied A - Mathematical Paper II * (or)	7	3	25	75	100	5
	Chemistry Theory II **	4	3	20	55	75	4
III	Allied Practical**	3	3	20	30	50	2
IV	Skill based Subject 2 (Diploma) Instrumentation II	3	3	25	75	100	3
IV	Tamil @ /Advanced Tamil # (OP)		75	2			
	Non-major elective -II (General Awareness #)	2	3	/	3	75	2
	Semester V						
III	Core VI – Mathematical Physics	5	3	25	75	100	4
III	Core VII – Applied Electronics	5	3	25	75	100	4
III	Core VIII – Solid State Physics	4	3	25	75	100	4
III	Core IX – Principles of Digital Electronics & Micro	3	3	25	75	100	5
	Processors	3	5	23	15	100	5
III	Major Practical III - Electronics Alone	2	-	-	-	-	-
III	Major Practical IV - Digital and Micro Processor	2	-	-	-	-	-
III	Elective –I	4	3	25	75	100	5
	Major Practical V - C and C++	2	-	-	-	-	-
IV	Skill based Subject 3 (Diploma) Instrumentation III	3	3	25	75	100	3
	Semester VI						
III	Core X – Quantum Mechanics and Relativity	4	3	25	75	100	4
III	Core XI - Principles of Programming concepts	4	3	20	55	75	3
	and C Programming	4		20			_
	Core XII - Object Oriented Programming with C++	4	3	20	55	75	3
III	Major Practical III - Electronics Alone	2	3	40	60	100	3
	Major Practical IV - Digital and Micro Processor	2	3	40	60	100	3
	Major Practical V - C and C++	2	3	20	30	50	1
III	Elective –II	4	3	25	75	100	5
III	Elective –III	5	3	25	75	100	5
IV	Skill based Subject 4 (Diploma Practical)	3	3	40	60	100	3
V	Extension Activities @	-	-	50	-	50	1
	Total					3800	140

* For subjects without practical ** For subjects with Practical

@ No University Examinations. Only Continuous Internal Assessment (CIA)

No Continuous Internal Assessment (CIA). Only University Examinations.

List of Elective papers (Colleges can choose any one of the paper as electives)				
Elective – I	Α	Nano Mechnanics		
B \$		\$		
	С	\$		
Elective – II	II A Fundamentals of Nano Materials and its Characterization			
	В	\$		
	С	\$		
Elective - III	Α	Nanoscale Materials & Devices		
	B	\$		
	С	\$		

\$ - yet to be submitted

SEMESTER – I

CORE PAPER I HEAT AND THERMO DYNAMICS

No. of Credit Hours : 3 per week

Subject Description :

This paper presents the principle of heat and Thermo dynamics.

Goal:

To enable the students in order to learn the basic principles and concepts of Heat and Thermodynamics

Objectives

The aims is to provide the students

- > To understand the principles of calorimetry
- > understand the basic principle and laws of thermodynamics
- understand the concepts of entropy

UNIT I

Calorimetry: C_p and C_v of a gas – Meyer's Relation – Experimental determination of C_v Jolly's Method – determination by Regnault's Method – Specific heat of gas by calendar Barnes method – Experimental Determination of Specific heat of liquid – Linear Expansion – Air wedge Method – Thermostat.

UNIT II

Transmission of heat : Conduction – Co-efficient of the thermal conductivity – Cylindrical flow of heat – determination of thermal conductivity of rubber and bad conductor – Lee's disc method. Conduction – Radiation – Black body – Wein's Law - Rayleigh Jeans Law – Stefan's law – Experimental Determination of Stefan's constant – Mathematical derivation of Stephan's law

UNIT III

Kinetic theory of gases: Equipartition of energy- ratio of specific heat capacities – Maxwell's law of distribution of molecular velocities – Experimental verification – equilibrium speed distribution of velocities. Mean free path – transport phenomena – diffusion – viscosity and thermal conduction of gases – Vander walls equation – relation between Vander Wall's constant and critical constants.

UNIT IV

Laws of Thermodynamics: I Law – Isothermal and Adiabatic process – gas equation during an adiabatic process – Work done an adiabatic expansion of gas – equation of an adiabatic curve – isothermal processes – Determination of γ by clement and Desormes method – II law – Carnot's engine- Working efficiency – Carnot refrigerator – Carnot's Theorem.

(9 hrs)

(9 hrs)

(9 hrs)

(9 hrs)

Annexure No. 18 C SCAA Dt. 21.05.2009

UNIT V

(9 hrs)

Concept of entropy: Change in entropy in reversibility and irreversibility process entropy of an ideal gas – temperature entropy diagram – increase of entropy in any irreversible process – Thermo dynamics functions – Maxwell's thermodynamics relations and applications – Joule – Kelvin effect (theory)- Claussius and Clapeyron equation.

Text Book

Thermal Physics, R. Murugesan, I Edi, 2002

Heat & Thermodynamics, Brijlal & N. Subramaniam

Reference Books

- 1. Heat and Thermodynamics Sears & Semansky
- 2. Heat and Thermodynamics D.S. Mathur, S. Chand & Co, Edi 2002.
- 3. Heat and Thermodynamics Agarwal, Singhal, Sathyaprakash
- 4. Thermal Physics H.C. Saxena and Agarwal

SEMESTER – I CORE PAPER II MECHANICS, PROPERTIES OF MATTER AND SOUND

No. of Credit Hours: 3 per week

Subject Description:

This paper presents the principle of motion of rigid bodies, liquids and knowledge sound energy.

Goal:

To enable the students in order to learn the basic principles, theory and concepts of matters, sound and mechanics.

Objectives

To gain knowledge by the students in order to

- learn motion of bodies and sound waves
- > acquire basic knowledge of mechanics, properties of matter and gravitation
- know how to apply the conservation of rotational motion

UNIT I

(9 hrs)

Conservation Law – Impulse – Impact – Direct and oblique impact – Final velocity and loss of kinetic energy –Motion of a particle in a vertical circle – friction – Laws of friction – angle of friction – resultant reaction – cone of friction – Equilibrium of a body on a rough inclined plane to the horizontal and when the inclination in greater then the angle of friction.

UNIT II

Motion of rigid body

Moment of inertia – Parallel and perpendicular axes theorem – M.I. of rectangular Laminar and triangular laminar – M. I of a solid sphere about all axes – Compound pendulum – torque and angular momentum – Relation – Kinetic rotation – conservation of angular momentum

UNIT III

Gravitation: Kepler's Law of Planetary motion – Laws of gravitation – Boy's method for G – Gravitational potential – Gravitational field at a point due to spherical shell – Variation of 'g' with latitude altitude and depth.

Elasticity: Elastic modules – Poison's ratio – relation between theorem – Expression for bending moment – determination of Young's modular by uniform and non-uniform bending I section girders – Static Tension – Expression for couple per unit twist – Torsional oscillation.

UNIT IV

Surface Tension: Definition and dimension of surface Tension – Excess of Pressure over curved surface – Variation of S.T. with temperature Jaeser's Experiment.

Viscosity: Definition – Rotation viscometer- viscosity of gases, Meyer's Modification of Poiseuille's formula – Rankine's method for viscosity of gas.

UNIT V

Sound: Simple Harmonic vibration – Progressive waves – properties – Composition of two S.H.M. and beats – stationary waves – Properties Melde's Experiment for the frequency of electrically maintained tuning fork – Transverse and longitudinal modes – Ultrasonic – Properties and application.

Text Books

- 1. Properties of Matter Brijlal. and N. Subramaniam S Chand & Co
- 2. Text Book of Sound Brijlal. and N. Subramaniam S Chand & Co

Reference Books

- 1. Mechanics, Properties of matter and sound, Thermal Physics R. Murugesan, Edi 2002.
- 2. University Physics Sears Semansky and Ground
- 3. Text books of Sound Ghosh
- 4. Elements of Properties of Matter D.S. Mathur
- 5. Mechanics B.S. Mathur, S. Chand and Co, Edi 2002.

Annexure No. 18 C SCAA Dt. 21.05.2009

(9 hrs)

(9 hrs)

(9 hrs)

(9 hrs)

SEMESTER – II CORE PAPER III ELECTRICITY AND MAGNETISM

No. of Credit Hours: 6 per week

Subject Description:

This paper presents the basic principle of charged body, when they are in rest and also under motion. This paper gives the knowledge regarding the electrical energy and magnetic energy.

Goal:

To enable the students in order to learn the basic principles theory and concepts of electricity and magnetism.

Objective

To gain knowledge about the electrical energies in order to

- learn motion of charges
- acquire basic knowledge of magnetic properties
- know about the alternating current and its circuits
- > get a depth of knowledge in electricity and magnetism

UNIT I

Gauss theorem and its applications

Normal electric induction L Gauss theorem, application of guass theorem; electric intensity at a point immediately adjacent to a charged conductor; energy stored in unit volume of an electric field.

Capacitance and Capacitors

Spherical capacitor: Cylindrical capacitor, Force of attraction between charged plates of a capacitor l change in the capacitance – capacity of a parallel plate capacitor; effect of introducing a dielectric slab between the plates – Guard ring condenser polarization in dielectric materials.

UNIT II

Magnetic Properties of materials

Electron theory of magnetism; dia, para, ferromagnetism; magnetic field B; magnetization M; magnetic field intensity H; magnetic susceptibility and magnetic permeability; magnetic materials and magnetization; magnetic hysterisis area of the hysterisis loop; determination of susceptibility : Guoy's method – magnetic circuits - comparison of magnetic with electrical circuits.

UNIT III

Thermo Electricity : Seebeck effect: Laws of thermo e.m.f; Peltier effect; Peltier Co-efficient, determination of Peltier co-efficient a junction; thermo dynamical consideration of Peltier effect; Thomson effect; Thomson Co-efficient; e.m.f generated in a thermocouple taking both Peltier effect and Thomson effect in the metals; Thermo electric power; Application of thermodynamics to Thermocouple ; Thermoelectric diagrams and their uses.

(18 hrs)

(18 hrs)

(18 hrs)

UNIT IV

Page 7 of 29

Helmholtz equation of varying current

Growth and decay of current in an inductive – resistive circuit charging and discharging of a capacitor through a resistance; charging and diacharging of capacitor through an inductance oscillatory circuits- Force on a current carrying conductor; Theory of Ballistic Galvanometer.

UNIT V

Dynamics of charged particles

Charged particles in a uniform and constant electric field; Charged particles in an alternating electric field; Charging particles in a uniform and constant magnetic field; magnetic focusing ; charged particles in combined electric and magnetic field when the fields are parallel and are in mutually perpendicular direction.

A conducting rod moving through a uniform magnetic field – inductance in series – in parallel – self inductance of coaxial cylinders – self inductance of toroidal coil of rectangular cross section - circular cross section - Grassot fluxmeter - comparison with Ballistic galvanometer - rotating magnetic field.

Books for Study

- Brijlala and Subramaniam 1. Electricity and Magnetism
- 2. Electricity and Magnetism – R. Murugesan

Books for Reference

- D.N. Vasudeva 1. Electricity and Magnetism
- 2. Electricity and Magnetism – Nagarathanam and Lakshminarayanan
- 3. Fundamental of Electricity and Magnetism
- B.D.Duggal and C.L. Chhabra – D.S. Mathur
- 4. Mechanics

CORE PRACTICAL I

Credit Hours : 3 hours per week

ANY FOURTEEN EXPERIMENTS ONLY (EXAMINATION AT THE END OF SECOND SEMESTER)

- 1. Compound Pendulum.
- 2. Comparison of Viscosities Capillary Flow Method
- 3. Young's Modulus Non- Uniform bending Pin and Microscope
- 4. Young's Modulus Uniform bending Optic lever
- 5. Rigidity modulus Static Torsion Scale and Telescope
- 6. Sonometer Frequency of A.C.
- 7. Spectrometer Refractive index of Solid Prism
- 8. Resonance Column Velocity of Sound
- 9. Moment of magnet Tan C Position
- 10. Characteristics of a Junction Diode
- 11. Spectrometer (i.d) Curve

Annexure No. 18 C SCAA Dt. 21.05.2009

(18 hrs)

(18 hrs)

B.Sc. Physics with Nanotech. (Colleges-revised) 2008-09 Page 8 of 29 Annexure No. 18 C SCAA Dt. 21.05.2009

12. Air Wedge – Thickness of Wire

- 13. Field along the axis of a coil Moment of a Magnet
- 14. Potentiometer Specific Resistance of a wire
- 15. Potentiometer Low range Ammeter Calibration
- 16. Young's Modulus Cantilever Depression Scale and Telescope
- 17. Young's Modulus Cantilever Dynamic Method
- 18. Viscosity by Capillary flow method
- 19. Melde's Strings Frequency of Vibrator.

SEMESTER - III CORE PAPER IV OPTICS

No. of Credit Hours : 4 hours per week Subject Description

To study the optical instrument objects in images propagation of light, nature and behaviour of light, vibration of light laser and as application

Goal and objectives

To provide a good foundation in optics

- To provide a knowledge of the behaviour of light
- To inspire interest for the knowledge of concepts

UNIT 1 - Geometrical Optics

Aberrations-- Spherical aberrations in lens—coma—Astigmatism-- chromatic aberration-dispersion by a prism-- Cauchy's dispersion formula-- dispersive power, achromatism in prism-dispersion without deviation-- chromatic aberrations in a lens-- circle of least confusion, achromatic lens--condition for achromatism of two thin lenses separated by a finite distances.

Physical Optics

UNIT 2 Interference

Fresnel's Biprism – Interference in thin films due to reflected light – Fringes due to wedge shaped thin film – Newton's rings – Refractive index of the Liquid – Michelson interferometer – Determination of a wave length of monochromatic light – difference in Wave length between two neighboring spectral lines – Fabry Perot Interferometer – Visibility of fringes – sharpness of fringes – Resolving Power

UNIT 3 Diffraction

Fresnel's assumptions – rectilinear propagation of light – half period zone – Zone Plates – Action and Construction – comparison with a convex lens – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction at a Single light – Diffraction grating – Resolving power & Dispersive power of Grating.

UNIT 4 Polarization

Double Refraction – Huygen's explanation --Optic axis in the plane of incidence inclined and parallel, perpendicular to the crystal surface – Production and Detection of Plane, Circularly and

(12 hrs)

(**12** hrs)

(12 hrs)

Elliptically Polarized light – Optical Activity – Fresnel's explanation – Specific rotation – Half Shade Polarimeter.

UNIT 5 Quantum Optics

Light quanta and their origin – Resonance radiation – Metastable states – Population Inverse – Optical pumping – Spontaneous and Stimulated emission – Einstein's coefficient – Ruby, He-Ne, CO₂ laser – Resonant cavities – elements of non linear optics – second harmonic generation – threshold condition for lasing – Stimulated Raman scattering.

Books for Study

1.	A Text book of Optics	Brijlal & Subramaniam
2.	Modern Physic	R Murugesan

Books for Reference

3.	Optics and Spectroscopy	R Murugesan
4.	Optoelectronics	Thiyagarajan

SEMESTER – III

DIPLOMA PAPER I INSTRUMENTATION I

Subject Description

To study the instrument with its principle and observe the method their functioning

Goal and objectives

- \checkmark To provide a good foundation in measurements
- \checkmark To provide a knowledge of the behaviour of instruments
- ✓ To inspire interest for the knowledge of concepts regarding measurements

UNIT 1

Basic Concept of Measurement

Introduction – System configuration – Problem Analysis – Basic Characteristics of measuring devices – Calibration

Transducers

Capacitive transducers – Piezoelectric transducers – Photoelectric effect – Photoconductive transducers – Ionization transducers – Hall effect transducers – Digital displacement transducer.

UNIT 2

Performance Characteristics of an Instrumentation system

Introduction – Generalized measurement – Zero order system – Second order system – Dead time element – Specification and testing of dynamic response.

Annexure No. 18 C SCAA Dt. 21.05.2009

(12 hrs)

(9 hrs)

(9 hrs)

(9 hrs)

Mechanical Pressure measurement devices – Bourdon tube Pressure gauge – The Bridgeman gauge – Dead weight tester – Low Pressure measurement – The Mc lead gauge – Pirani thermal conducting gauge- The Knudsen gauge.

Unit 4

UNIT 3

Flow Measurement

Pressure Measurement

Positive displacement methods – Flow Obstruction methods – Flow measurement by drag effects – Hot wire and Hot film anemometers – Magnetic flow meters – Flow visualization methods – The Shadow graph

Unit 5

Measurement of Temperature

Temperature scales – The ideal gas thermometer – temperature measurements by mechanical effects – temperature measurements – Thermisters – Thermoeletric effects – quartz crystal thermometer – liquid crystal thermography.

Book for Study

Unit 1 & 2: Instrumentation Devices and Systems -

C S Rangan, G R Sharma, V S V Mani TMH.

Unit 3 & 4: Experimental Methods for Engineers – Jacy P Hofman, TMH.

Unit 5 : Experimental methods for experiments by Jack P Holman

SEMESTER – IV

CORE PAPER V ATOMIC PHYSICS AND NUCLEAR PHYSICS

No. of credit hours : 4 hours per week

Subject Description

Analysis of Atom, modeled in various aspects, spectral lines subjected to magnetic fields, light inducing electron emission, X-rays and the nuclear concepts of the atom.

Goals and Objectives

- \checkmark To provide a detailed study of atom
- \checkmark To learn the impact of magnetic fields on spectra
- \checkmark To learn the behaviour of nucleolus in various states
- ✓ To provide a knowledge of the application of observed theories

Unit 1 Magneto Optical Properties of Spectrum

Optical spectra – Fine Structure of the sodium D line – Zeeman effect – Experiments – Lorentz classical theory – Expression for Zeeman shift – Larmor's theorem precession – Quantum mechanical explanation – Anomalous Zeeman effect – Paschen Back effect – Stark effect –

(9 hrs)

(9 hrs)

(12 Hrs)

Unit 2 Photoelectric Effect

Introduction – Richardson and Compton experiment – Relation between Photoelectric current and retarding potentials – Relation between Velocity of Photo electrons and the frequency of light – Laws of Photoelectric emission – Failure of electromagnetic theory – Einstein's Photo electric equation – Experimental verification – Millikan's Experiments – Photo electric cells – Photo emission cell – Photo Voltaic cell – Photo conductive cell – Applications of Photo electric cell.

Unit 3 X-ray Spectra

X-ray – Coolidge tubes – Properties – X-ray Spectra – Continuous and characteristics X-ray spectrum – Mosley's law (Statement, Explanation and Importance) – Compton effect – Expression for change of wave length - X-ray diffraction-Bragg's law - Bragg's spectrometer - Powder crystal method.

Unit 4 – Radioactivity

Natural Radioactivity – Alpha, Beta and Gamma rays – Properties – Determination of e/m of Alpha particle – Determination of e/m of Beta particle – determination of Wavelength of Gamma rays (Dumond Spectrometer) – Laws of Radioactivity – Soddy-Fajan's displacement law – Law of Radioactive disintegration – Half life period – Mean life period (Definitions, Expression) – Units of Radioactivity – Artificial Radioactivity – Preparation of radio elements – Application of radio isotopes.

Unit 5 - Nuclear Fission and Fusion Reactions

Nuclear fission – Energy released in Fission – Bohr and Wheelers theory of Nuclear fission – Chain reaction – Multiplication factor – Critical size – Natural Uranium and chain reactions – Atom Bomb – Nuclear reactor – Nuclear fusion – Source of Stellar energy – Carbon Nitrogen cycle – Proton - Proton cycle – Hydrogen bomb – Controlled thermo nuclear reactions.

Book for Study:

1. Modern Physics R Murugesan (S. Chand & Company)

Books for Reference

1. Modern Physics	Sehgal Chopra Sehgal
2. Source book on Atomic Energy	Galsstons (S)
3. Atomic Physics	Rajam
4. Introduction to Atomic Spectra	White (HE)
5. Nuclear Physics	D C Tayal
6. Concept of Modern Physics	Arthur Beiser
7. Introduction to Modern Physics	F K Richtmyer Etal

Annexure No. 18 C SCAA Dt. 21.05.2009

(12 Hrs)

(12 Hrs)

(12 hrs)

SEMESTER – IV

DIPLOMA PAPER II INSTRUMENTATION II

No. of Credit Hours : 3 Hours

Subject Description

To study the instrument with its principle and observe the method their functioning

Goal and objectives

- \checkmark To provide a good foundation in measurements
- \checkmark To provide a knowledge of the behaviour of instruments
- ✓ To inspire interest for the knowledge of concepts regarding measurements

UNIT 1

Temperature Measurement by Radiation:

Effects of heat transfer and temperature measurements – Transient response of thermal systems – Thermocouple compensation – Temperature measurement flow in high speed flow.

Thermal and transport property Measurement.

Thermal conductivity measurements – Thermal conductivity of liquids and gases – Gas diffusion – Calorimeter – Convection – heat transfer measurements – Humidity measurements – Heat flex meter – pH measurements.

UNIT 2

Force, Torque and Strain Measurements

Introduction – Mass balance measurements – Elastic elements for force measurements – Torque measurement – Stress and Strain measurements – Electrical resistance – strain gauges – Temperature compensation.

UNIT 3

Vibration

Random Vibration – Shock – Analyzing vibration sensing devices – Generalized second order system – Absolute displacement – Absolute velocity and acceleration vibrating sensing devices – Velocity transducer – Banded strain gauge accelerators – Piezo electric accelerometer.

UNIT 4

Thermal and Nuclear Radiation Measurements

Introduction – Detection of thermal radiation – Measurement of emissivity – Reflectivity and Transmitting measurements – Solar radiation measurements – Detection of Nuclear radiation – The Geiger Muller counter – Ionization chamber – Photographic detection methods – Neutron detection – Statistics of counting.

UNIT 5

Air Pollution Sampling and Measurements

Introduction – Units of pollution measurements – Air pollution standards – General air sampling – Train gas sampling techniques – Particulate sampling techniques – Sulpher dioxide measurements – Combustion products measurements – opacity measurements – odor measurements.

(9 Hrs)

(9 Hrs)

(9 Hrs)

(9 Hrs)

(9 Hrs)

Books for Study:

Unit 1, 2, 4 to 5: Experimental methods for Experiments by Jack P Holman Unit 3: Instrumentation Devices and Systems –

C S Rangan, G R Sharma, V S V Mani TMH.

CORE PRACTICAL – II (Examination at the end of Fourth Semester) Any Fourteen (14) Experiments only

- 1. Rigidity Modulus Torsional Pendulum With & Without symmetrical masses
- 2. Quincke's method Surface Tension and Angle of Contact of Mercury
- 3. Specific heat capacity Newton's law of cooling Spherical calorimeter
- 4. Spectrometer Hollow prism Refractive index of the Prism
- 5. Determination of M_H and B_H
- 6. Zener diode Characteristics
- 7. Spectrometer -(i i') curve
- 8. Newton's rings Refractive index of a lens
- 9. Reduction factors of a Tangent Galvanometer BG
- 10. Comparison of Mutual Inductance BG
- 11. Spectrometer Grating Minimum deviation & Normal Incidence
- 12. Young's Modulus Koenig's Method Non Uniform bending
- 13. Young's Modulus Koenig's Method Uniform bending
- 14. Spectrometer Cauchy's constant
- 15. Spectrometer Dispersive Power
- 16. Spectrometer Narrow Angled Prism
- 17. Carey Foster's Bridge Temperature Coefficient
- 18. Potentiometer Reduction factor of T.G in Primary
- 19. Potentiometer EMF of a thermocouple
- 20. B.G Absolute Capacity
- 21. B.G Determination of High Resistance

SEMESTER – V CORE PAPER VI MATHEMATICAL PHYSICS

No. of credit hours : 5 per week

Subject Description :

This paper presents the fundamental of classical mechanics special functions and matrices which will be used for studies solving problems during research work.

Goal:

To enable the students to acquire the problem solving ability and to apply the equations for the situation of different physical problems.

Objectives

To acquire knowledge and apply it to various physical problems

- Various physical problems
- To apply the develop the problem solving ability.
- To motivate the students to apply matrices or solving problems in spectroscopy, nuclear physics etc.,
- To apply vectors to non-linear dynamics

UNIT 1

Classical Mechanics - I

Constraints and Degrees of Freedom - Generalized coordinates - Generalized displacement -Velocity - Acceleration - Momentum - Force - Potential - D'Alembert's Principle -Lagrangians equation from D'Alembert's principle – Application of Lagrange's equation of motion to Linear Harmonic Oscillator, Simple Pendulum and Compound Pendulum.

UNIT 2

Classical Mechanics – II

Phase Space – Hamiltonian function – Hamiltonian Principle – Hamilton's canonical equations of motion- Physical significance of H – Applications of Hamiltonian equations of motion to Simple Pendulum, Compound Pendulum and Linear Harmonic Oscillator.

UNIT 3

Special Functions

Definition - The Beta function - Gamma function - Evaluation of Beta function - Other forms of Beta function – Evaluation of Gamma function – Other forms of Gamma function - Relation between Beta and Gamma functions - Problems.

UNIT4

Matrices

Introduction – special types of Matrices – Transpose of a Matrix – The Conjugate of a Matrix – Conjugate Transpose of a Matrix - Symmetric and Anti symmetric - Hermitian and skew Hermitian - Orthogonal and Unitary Matrices - Properties - Characteristics equation - Roots and characteristics vector - Vector - Diagonalization of matrices - Cayley - Hamilton theorem -Problems

UNIT 5

Vector Calculus

∇ Operator – Divergence – Second derivative of Vector functions or fields – The Laplacian Operator - Curl of a Vector - Line Integral - Line Integral of a Vector field around an infinitesimal rectangle - Curl of Conservative field - Surface Integral - Volume Integral (without problem) – Gauss's Divergence theorem and it's proof – Stoke's and its proof with simple problems.

Books for Study and Reference

1.	Mathematical Physics	B D Gupta
2.	Mathematical Physics	Rajput

(15 Hrs)

(15 Hrs)

(15 Hrs)

(15 Hrs)

(15 Hrs)

- 3. Classical Mechanics
- 4. Mathematical Physics
- 5. Mathematical Physics
- 6. Mathematical Physics
- 7. Mathematical Physics

Gupta Kumar & Sharma K N Pillai Sathiya Prakash H K Dass Gupta Kumar & Sharma

SEMESTER – V CORE PAPER VII APPLIED ELECTRONICS

No. of credit hours : 4 hours per week Subject Description :

This paper presents the fundamentals of electronics and its theory which will be used for studies solving problems during research work.

Goal:

To enable the students to acquire the knowledge of electronics and to apply the principles for the situation of different physical problems.

Objectives

- To acquire knowledge and apply it to
- Various electronics instruments
- To apply the development of the electronic instruments.
- To motivate the students to apply the principles of electronics in their day to day life.

UNIT 1 – Amplifiers

Characteristics of an amplifier, Voltage amplifiers - Feed back amplifier- feed back and related terms- block diagram of a feed back amplifier-Transfer gain of an amplifier with feedback-Emitter follower circuit - an example of negative feedback.

UNIT 2 – Oscillators

Introduction - Types of oscillators - Fundamental principle of oscillators - Concept of feedback oscillators - Hartley oscillators - Analysis - Colpitts oscillators - Analysis - Phase shift oscillators-Analysis - Wien bridge oscillator - Analysis.

UNIT 3 -- Solid state switching circuits

Introduction - important terms - Collector leakage current - Saturation collector current - Switching transistors - Switching action transistor – OFF region – ON region – Active Region. Multivibrator – Types of multivibrator – Transistor Astable multivibrator – circuit details - Operations - ON or OFF time – transistor mono stable multivibrator -Circuit details – operations – transistor Bistable multivibrator - Circuit details – operations.

UNIT 4 -- Wave Shaping Circuits

Differentiating circuit - Output waveforms - Integrating circuit – Output waveforms-Important applications of diodes – Clipping circuit – positive clipper – biased clipper – combinations

(12 hrs)

(12 hrs)

(12 hrs)

clipper – applications of clipper- Clamping Circuits-basic idea of a clamper-Positive clamber – Operations – negative clamper.

UNIT 5 -- Power Electronics

Introduction - power electronics - The Triac – Construction - Operations – Characteristics - Applications. The Diac – Operations – Applications of Diac – Lamp dimmer heat control. Uni junction transistor – Constructions – Operations - equivalent circuit of UJT – Characteristics of UJT - advantages of UJT – UJT relaxations Oscillator - UJT over voltage detector.

Book for Study and Reference

- 1. Foundation of Electronics D Chattopadhyaya & R C Raksjti
- 2. Principles of Electronics V K Metha
- 3. Applied Electronics R S Sedha
- 4. Integrated Electronics Millman and Halkias
- 5. Electronics devises and Circuits Millman and Halkias.

SEMESTER – V CORE PAPER VIII SOLID STATE PHYSICS

No. of credit hours : 4 hours per week

Subject Description :

This paper presents the fundamentals of solids and its bond theory which will be used for studies solids, how they are formed.

Goal:

To enable the students to acquire the knowledge of electrons and their bonds with the external applied force as well as the interval attractive force.

Objectives

To acquire knowledge of

- Various bond theory
- And to know the method of forming different alloys, conducting materials.
- To motivate the students to apply the principles of bond theory in their research studies.

UNIT 1

Crystallography: Distinction between crystalline and amorphous solids – Different features of the crystal – Crystal lattice – Basis – Crystal structure – Unit cell – Number of lattice points per unit cell- Bravise lattices – Miller indices – Elements of Symmetry – Structure of KCl and NaCl crystal – Atomic Packing – Atomic radius –-Lattice constant and density- Crystal structure (sc; hcp; fcc;bcc.)

(12 hrs)

UNIT 2

Band theory of solids - Classification of solids - Basics of Bond theory - Optical properties of solids – Specific heat capacity of solids – Dulong and Pettit's law – Einstein's theory of specific heat of solids - Fermi levels .

UNIT 3

Free electron theory - Drude Lorentz theory - Explanation of Ohm's law - Electrical conductivity - Thermal conductivity - Wide-Mann and Franz ratio - Sommerfield model -Schotcky effect - Hall effect - Hall voltage and Hall coefficient - Mobility and Hall angle -Importance of Hall effect – Experimental determination of Hall coefficient.

UNIT 4

Magneto properties of materials - Dia Magnetism - Para Magnetism - Ferro Magnetism and Anti Ferro Magnetism - Magnetic fields properties due to circulating current in atoms -Langevin's theory of Dia magnetism - Langevin's theory of Para Magnetism - Weiss' theory of Ferro Magnetism.

UNIT 5

Dielectrics- Dielectric constant and displacement vector- Clausiss mossotti relation- Atomic or molecular polarizability – Types of polarizability -Super conductivity – Phenomena – magnetic properties - Super conductor - Meissner effect - Experimental facts - Isotopes effect -Thermodynamic effect.

Books for Study:

1. Solid State Physics	Gupta and Kumar
2. Modern Physics	R Murugesan
Books for Reference:	
1. Introduction to Solid State	Physics Charles Kittel
2. Solid State Physics	A J Dekker

SEMESTER – V **CORE PAPER IX** PRINCIPLES OF DIGITAL ELECTRONICS AND MICRO PROCESSORS

No. of credit hours : 3 hours per week

Subject Description

This paper presents basic principles of digital electronics. This paper gives deep knowledge to the students regarding number system, arithmetic building blocks, memories and data processing circuits.

Goal

To enable the students to learn the basic principles, theory and concepts of number system memories and data processing circuits counters

(12 hrs)

(12 hrs)

(12 hrs)

Objectives

To give description for the students in order to

- Learn the logic circuits
- Acquire basic knowledge of binary addition
- Understand the action and application of counters
- Get a deep knowledge of various memories used in computer circuits

UNIT 1 - Arithmetic Circuits

Binary addition - Binary Subtraction - Unsigned Binary numbers - sign magnitude numbers -2's complement representation – 2's complement Arithmetic – Arithmetic building blocks – The Adder – Subtractor.

Flip – Flops:

RS flip flop – Clocked RS flip flop – D flip flop – Edge triggered D flip flop – JK flip flop – JK Master Slave flip flop – Schmitt trigger.

UNIT 2 - Shift Register and Counters

Types – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out - Ring counter - Asynchronous counter - Decoding gates - Synchronous counter - Mod 3 counter – Mod 5 counter – shift counter.

UNIT 3 - Semiconductor Memories

Basic – Memory addressing – ROM's PROM's and EPROM's – RAM's – DRAM's – Dynamic RAM's.

D/A and A/D Conversion:

Variable - Resistor Network - Binary ladder - D/A converter - A/D converter - Simultaneous conversion – Counter method – continuous A/D conversion

Unit 4 - Microprocessor and Data Representation

Basic concept - what is Microprocessor, 4, 8, 16, 32 - Organization of Microprocessor -Microprocessor Programming - Instruction - Machine and Mnemonic codes - Machine and Assembly Language Programming – High level Language programming – Timing diagram conventions.

Organization of 8085 – Data and Address buses addressing – The I/O devices – Register in 8085 - Instruction types - Classification of Instruction - Addressing modes - Programming the 8085 -The Programming process – machine language programming – Assembler Programming.

Unit 5 Semi Conductor Memories

Introduction – Registers – Primary memory – Mass storage, cache – off line backup – memory chips - static and dynamic RAMs, ROMs and their versions characteristics of memories : Memory chip capacity and organization - memory size - combining the chips together with example electrical signals. Static RAM : Organisation of 6264 - Read and write cycle of 6264 dynamic RAMS : Organisation of 51100 x – Read and write cycle of 51100 x RAS only fresh hidden fresh – Burst and distributed i.e., fresh – pseudo static ram and automatic refresh.

(9 hrs)

(9 hrs)

Annexure No. 18 C

SCAA Dt. 21.05.2009

(9 hrs)

(9 hrs)

(9 hrs)

Books for Study:

- 1. Digital Principles and Applications Albert Paul Malvino & Donald P Leach (Fourth Edition, TMH).
- 2. Introduction to Microprocessors by Aditya P Mathur (3rd Edition TMH).

Books for Reference:

- 1. Integrated Electronics Millmann & Halkeias
- 2. Microprocessors by Goenkar Microprocessors by K Ramachandran.

SEMESTER – V DIPLOMA PAPER III **INSTRUMENTATION III**

No. of Credit Hours : 3 Hours per week **Subject Description**

To study the instrument with its principle and observe the method their functioning **Goal and objectives**

- \checkmark To provide a good foundation in measurements
- \checkmark To provide a knowledge of the behaviour of instruments
- \checkmark To inspire interest for the knowledge of concepts regarding measurements

UNIT 1

Data Acquisition and Conversion

Introduction - Signal conditioning of the inputs - Single channel data acquisition systems -Multi channel data acquisition system - Data conversion - Digital of Analog converter - Analog to Digital converter – Multiplexer and Sampling hold circuits.

UNIT 2

Input – Output Devices and Displays

Introduction - Analog display and recorder - Graphic recorder - Optical oscillograph - self balancing potentiometer - X-Y recorder - Magnetic recorder - Digital input - output devices -Punched card-paper type – output equipments – Line printer – Digital tape recording – Disk files and floppy disk.

UNIT 3

Basic meter movements

Permanent magnetic moving coil movements - Practical PMMC movements - Taut band instrument – Electro dynamometer – Moving ion type instrument – Concentric vane repulsion type (Moving ion type) - Display devices: LED - LCD - Gas discharge Plasma displays -Sequential display using LED's – Line printer – Drum printer – dot matrix printer.

UNIT 4

Digital Instruments

Introduction – Digital Multi meter – Digital panel meters – Digital frequency meters – Digital measurement of time - Universal counter - Digital measurement of frequency - Digital tacho meter – Automation in digital instruments.

(9 hrs)

(9 hrs)

(9 hrs)

(9 hrs)

Annexure No. 18 C SCAA Dt. 21.05.2009

UNIT 5

Oscilloscope

Introduction – Basic principles – CRT features – Basic principles of signal displays – Block diagram of oscilloscope – Simple CRO – Vertical amplifier – Horizontal deflecting system – Delay line in triggered sweep – CRT connection – Dual beam CRO – Dual beam oscilloscope – Storage oscilloscope measurement of frequency, capacitance, inductance and Voltage.

Book for Study:

Unit 1& 2: Instrumentation Devices and Systems – C S Rangan, G R Sharma, V S V Mani TMH Unit 3, 4 & 5: Electronic Instrumentation by H S Kalsi TMH

SEMESTER – VI CORE PAPER X QUANTUM MECHANICS AND RELATIVITY

No. of credit hours : 6 hours per week

Subject Description :

This paper presents the fundamentals of wave mechanics, Schrödinger's wave equation and its applications.

Goal:

To enable the students to acquire the problem solving ability and to apply the Schrödinger's wave equation for the situation of different physical problems.

Objectives

To acquire knowledge and apply it to

- Various physical problems
- To apply the develop the problem solving ability.
- To motivate the students to apply Schrödinger's equation or solving problems in wave mechanics, nuclear physics etc.,

UNIT 1- Wave Properties of Matter

Introduction – Phase velocity and Group velocity – Analytical expression for a group of waves – Nature of De'Broglie relation – Derivation of the De'Broglie relation – Phase velocity of De'Broglie waves – Relation between the Phase velocity and the wavelength of De'Broglie wave – De'Broglie wavelength associated with a particle of mass M and kinetic energy – Verification of De'Broglie relation – Davission and Germer's experiments – G P Thomson's experiments.

UNIT 2 - Uncertainty Principle

Introduction – Uncertainty Principle – Elementary proof between – Displacement and Momentum – Energy and Time – Physical Significance of Heisenberg's Uncertainty Principle – Illustration – Diffraction of electrons through a slit – Gamma ray microscope thought

(18 hrs)

(18 hrs)

(9 hrs)

Annexure No. 18 C SCAA Dt. 21.05.2009 experiment – Application – Non-existence of free electrons in the nucleus – Size and Energy in the ground state of Hydrogen atom

UNIT 3 - Schrödinger's Wave Equation

Introduction – Wave function for a free particle – Schrödinger's One dimensional wave equation - Time-dependent and Time independent - Physical interpretation - Limitation - Normalization of wave function – Operators – Eigen function – Eigen Value – Eigen equation – Operator for Momentum, Kinetic Energy and Total Energy - Postulates of Quantum Mechanics -Orthogonality of Energy Eigen function – Proof – Probability current density – Ehruenfest's theorem – Statement and proof.

UNIT 4 - Spherical Symmetrical systems

Three dimensional schrödinger's wave equation -Hydrogen atom - Wave equation for the Motion of a electron - Separation of variables - Azimuthal wave equation and its solution -Radial wave equation and it's solutions - Polar wave equation and its solution - Ground size of the Hydrogen atom.

UNIT 5 – Relativity

Galilean Transformation equation - Ether Hypothesis - Michelson-Morley experiment -Explanation of the Negative results - special theory of Relativity - Lorentz transformation equation - Length contraction - Time dilation - Addition of Velocities - Variation of Mass with velocity - Mass energy equivalence.

Books for Study:

1. Quantum Mechanics	S.P Singh and M.K Banda
2. Modern Physics	R Murugesan

Books for Reference:

1. Ouantum Mechanics Schiff 2. Introduction to Modern Physics F.K Richtmyer Etal

SEMESTER – VI CORE PAPER XI PRINCIPLES OF PROGRAMMING CONCEPTS AND C PROGRAMMING

Subject Description

This subject deals with the programming concepts of C language

Goal

To learn about C programming with various features

Objectives

On successful completion of this subject the student should have.

- Writing programming ability on scientific and mathematical problems
- ♦ It is very useful to the students in many ways like their higher studies and research etc., because of its versatility.

(18 hrs)

(**18 hrs**)

(18 hrs)

SCAA Dt. 21.05.2009

Annexure No. 18 C

UNIT I

Introduction - character sets - constants - keywords - and identifiers - variables variables – data types – declaration of variables – assigning values to variables – defining symbolic constants.

UNIT II

Arithmetic operators – relational operators – logical operators – assignment operators – increment and decrement operators – conditional operators – special operators – arithmetic expression - evaluation of expression. - precedence of arithmetic operators - some computer problems – type conversion in expression – operator precedence and associativity – mathematical functions.

UNIT III

Reading and writing character - formatted input and output - decision making : IF statement : Simple IF – IF ELSE – Nesting of IF. ELSE – ELSE. IF Ladder – Switch Statement - operator - go to statement - while .. do while - For loop - Jumps in loops - simple programs.

UNIT IV

Arrays : Introduction – One dimensional array – declaration of array – Initiating on two and multidimensional arrays – declaring and initializing string variables – reading strings from terminal – writing strings on the screen – Arithmetic operations on characters – simple programs.

UNIT V

Need for user defined functions – A multifunction program – RETURN values and their types – functions calls – category of functions – no arguments and no return values – simple programs.

Text Book

1. "Programming in ANSI C" by E. Balagurusamy, 3rd Edition **Reference Book** Programming in C by Ashok N. Kamthane First Indian Print 2004, Pearson.

SEMESTER – VI CORE PAPER XII **OBJECT ORIENTED PROGRAMMING WITH C++**

No of credit hours : 5 hours per week **Subject Description :**

This subject deals with the programming concepts of object oriented programming using C++

Goal:

To learn about object oriented programming concepts with different features

Objectives

On successful completion of this subject the student should have

Annexure No. 18 C SCAA Dt. 21.05.2009

(12 hrs)

(12 hrs)

(12 hrs)

(12 hrs)

- ↔ Writing program ability on oops concepts like encapsulation, data abstraction, Inheritance, polymorphism and overloading etc.
- ◆ To implement various scientific and mathematical problems with minimum no. of lines.

UNIT I

Software evolution – Procedure Oriented programming object oriented programming (oop) – Basic concepts benefits of OOP - Obejct oriented languages - Application of OOP - A simple C++ program – Structure of C++ program- Tokens – Key words- Identifiers and constants Basic data types - User defined Data Types - Derived data types - symbolic constants - Type compatibility - Declaration of variables - Dynamical Initialization of variables - Reference variables – Operators in C++ - Scope resolution operators.

UNIT II

(15 hrs)

The main function – Function prototyping – call be reference – Inline functions – Default arguments - Function overloading - Math library functions - classes and objects.

UNIT III

Constructors and destructors – operator over loading and type conversions

UNIT IV

Inheritance : Extending classes - Pointers- Polymorphism - pointers to objects - this pointer pointers to derived classes.

UNIT V

(15 hrs) Virtual functions – pure virtual functions – Managing console I / o operators.

Text Book

1. "Object Oriented Programming with C++" by E. Balagurusamy, Second edition.

2. Programming with C++, John R. Hubbard, II Edition 2002, TMH Publications

CORE PRACTICAL – III– ELECTRONICS PRACTICAL (EXAMINATION AT THE END OF SIXTH SEMESTER) **ANY SIXTEEN (16) EXPERIMENTS ONLY**

- 1. **Bistable Multivibrator**
- 2. R.C. Coupled Amplifier – Transistor single stage
- 3. Hartley Oscillator – Solid State
- Colpitt's Oscillator Solid State 4.
- **Tuned Plate Oscillator** 5.
- Tuned Grid Oscillator 6.
- Astable Multivibrator 7.
- Series and Parallel resonance circuits 8.
- 9. Differential Circuit and Integrating Circuit
- **Clipping and Clamping Circuits** 10.
- 11. Study of Solar Cell

Annexure No. 18 C SCAA Dt. 21.05.2009

(15 hrs)

(15 hrs)

(15 hrs)

- 12. Logic Gates Discrete components
- 13. Emitter Follower
- 14. IC Regulated Power Supply
- 15. Transistor Regulated Power Supply
- 16. Dual Power Supply
- 17. Square wave generator using 555 IC
- 18. Study of LDR
- 19. UJT Characteristics
- 20. Bridge rectifier with voltage regulation
- 21. junction diode & Zener diode Characteristics

<u>CORE PRACTICAL – IV DIGITAL AND MICROPROCESSOR</u> (EXAMINATION AT THE END OF SIXTH SEMESTER) ANY SIXTEEN (16) EXPERIMENTS ONLY

- 1. Verification of Truth tables of IC gates: OR, AND, NOT, XOR, NOR and NAND.
- 2. NAND as universal building block- AND, OR, NOT
- 3. Verification of De Morgan's theorem.
- 4. Boolean Algebra problem solving
- 5. Study of RS Flip-Flop.
- 6. Study of Shift –Registers –Serial in Parallel out.
- 7. Decade counter using 7490.
- 8. Half adder.
- 9. Full adder
- 10. Half Subtractor and Full Subtractor.
- 11. 4 BIT Binary Adder & Subtractor using 7483.
- 12. Code converter (Binary to gray and vice versa) & Seven segment Decoder
- 13. Binary Counter using 7493.
- 14. Parity check logic.
- 15. Up/Down Counter using 74190
- 16. 8085 ALP for 8 bit Addition and Subtraction
- 17. 8085 ALP for One's Complement, Masking off most significant 4 bits and setting bits.
- 18. 8085 ALP for Two's compliment Addition and Subtraction
- 19. 8085 ALP for 8 Bit Multiplication and Division
- 20. 8085 ALP for finding the Biggest number element in the array and Sum of the elements in the Array

<u>CORE PRACTICAL – V</u> C AND C++ <u>ANY SIXTEEN (16) EXPERIMENTS ONLY</u>

Programming in C

- 1. Find the number of Days elapsed between two dates.
- 2. Convert Integer in the range 1 to 100 in words.
- 3. Write a program that uses functions to compare two strings input by user. The Program should state whether the first string is less than, equal or greater than the second Strings.
- 4. Write a Program to compare two files printing the Character position where they equal and where they are differ.
- 5. Write a Program for Matrix addition
- 6. Write a Program for Matrix Multiplication.
- 7. Write a Program for Addition of Two times
- 8. Write a Program for find the Inverse of given Matrix
- 9. Write a Program for display the Multiplication table.

Programming in C++

- 1. To read any two number through the key board and to perform simple Arithmetic Operation (Use Do while loop)
- 2. To display the name of the day in a week, depending upon the number entered through the keyboard using Switch case statement.
- 3. To read the elements of the given two matrix of m X n and to perform the Matrix addition
- 4. Write a Program for Matrix Multiplication table.
- 5. Write a Program to find the Inverse of Given m X n Matrix
- 6. Write a Program to find the Modulus of the Given Number
- 7. Write a Program to compare two files printing the character position where they are equal and where they are differ.

SEMESTER – VI DIPLOMA PAPER IV INSTRUMENTATION PRACTICAL (Any Twelve)

- 1. Construction and Service of Power supply 2, 4, 6 Volts
- 2. Regulated power supply construction and service 5V& 12V
- 3. Dual power supply construction and service (-12)-0- (+12)
- 1. Regulated power supply service 5V& 12V
- 2. Dual power supply service (-12)-0- (+12)
- 3. Servicing Microscope
- 1. Servicing Telescope
- 4. Servicing Spectrometer
- 5. Servicing -Galvanometer,
- 6. Servicing Voltmeter
- 7. Servicing Ammeter.
- 8. Servicing -- UPS

- 9. Servicing ---Stop clock and Stop watch
- 10. Servicing ---Physical Balance
- 11. Servicing.—Mixie
- 12. Servicing.—Resistance box and Capacitance box
- 13. Servicing --- Signal Generators
- 14. Fixing and servicing a B.G.
- 15. Cutting, drilling, polishing and trimming.
- 16. Servicing.—Iron Box

SEMESTERS : V

ELECTIVE PAPER I – A NANOMECHANICS

Subject Description

This paper presents basic principles of nano materials. This paper gives deep knowledge to the students regarding the nano particles.

Goal

To enable the students to learn the basic principles, theory and concepts of nano mechanics.

Objectives

To give description for the students in order to

- Learn the size of the particles
- Acquire basic knowledge of atomic sizes.

UNIT I

(12 hrs)

(12 hrs)

Crystal lattices- two – dimensional crystals – three dimensional crystals – crystal structure with basis – periodic functions – one dimensional fourier series – two and three dimensional fourier series the reciprocal lattice – reciprocal space lattice – examples – Bloch's theorem.

UNIT II

Crystal theory of lattice – diatomic interaction potentials – boundary conditions in two and three dimension – normal models of the lattice – optical phonos – normal mode Hamiltonian – quantum operators for normal modes – connection to the classical continuum theory of solids

UNIT III

The three atom chain – quantum mechanics and linear chain effect of temperature on the linear chain – specific heat for an atom chain – thermal expansion - quantum operator for the simple harmonic oscillators – quantum operators for the n atom chain.

UNIT IV

Superposition – the stress tensor properties body forces – torques balance in the present of body forces – liners elastic response – orthorhombic materials – strain stress relation – polycrystalline materials.

(12 hrs)

Annexure No. 18 C SCAA Dt. 21.05.2009

UNIT V

(12 hrs)

A simple fabrication sequence – radio frequency flexural resonators – non linear resonators – free – free resonators – the Mathieu oscillator – optical parametric resonators – mechanical electrometers – thermal conductance in nanostructure – coupling of electron transport and mechanical motion.

BOOKS FOR STUDY

1. Fundamentals of Nano Mechanics – Andrew Nn.cleland springer, 2003.

SEMESTER : VI ELECTIVE PAPER II - A FUNDAMENTALS OF NANO MATERIALS AND ITS CHARACTERIZATION

Subject Description

This paper presents basic principles of nano materials. This paper gives deep knowledge to the students regarding the nano particles.

Goal

To enable the students to learn the basic principles, theory and concepts of nano mechanics.

Objectives

To give description for the students in order to

- Learn the size of the particles
- Acquire basic knowledge of atomic sizes.

Unit 1. INTRODUCTION TO NANOTECHNOLOGY (12 hrs)

Definition of Nanoscale system – Feymann theory of Nanotechnology – types of nanotechnology – Molecular Nanotechnology – Molecular and atomic size – Surface and dimensional space – opportunities at the Nanoscale.

Unit 2. NANO PROPERTIES

Forces between atoms and molecules, particles and grain boundaries – Vander Waals and electrostatic forces between surface – Nano and Mesopores – size dependent variation in magnetic, electronic transport, resistivity, optical and etc – Misnomers and misconception of Nanotechnology.

Unit 3. QUANTUM CONFINEMENT

Quantum confinement in one dimension – Quantum walls – Quantum confinement – In two dimensions – Quantum wires – Quantum confinement in three dimensions – Quantum dots – Super lattices band – Band offsets – Quantum dot layers.

(12 hrs)

Unit 4. SYNTHESIS OF NANOMATERIALS AND ITS CHARACTERIZATION (12 hrs)

Basic approaches of synthesis nanomaterials – Bottom up and top down process – fundamental of sol – gel process – Sol – Gel synthesis methods for oxides – Mechanical milling – thermal evaporation – XRD with Debye scherrer formula – SEM- TEM – FTIR – UV.

Unit 5. APPLICATION OF NANOMATERIALS

(12 hrs)

Implications of Drug delivery – Polymeric Nanoparticles as Drug carriers and controlled release implant devices – Magnetic Data Storage – Magneto optics and magneto – optic recording – Nano Sensors – Physical sensor and chemical sensors.

REFERENCES:

- 1. Nanotechnology : Basic Science and Emergic Technologies Mick Wilson, Kamli Kannangara, Geoff smith , Michelle Simmons, Burkhard Raguse, overseas press (2005)
- 2. Nanotechnology : A Gentle introduction to the next big idea, Mark A. Rather, Daniel Rather, Mark Rather, prentice Hall PTR; 1st edition (2002)
- 3. Robert W. Kel Sall, Mark Geoghenan, In W. Hamley, Nano Scale Science and technology, John Wiley and sons, 2005 ISBN 0470850868.
- 4. Recent advances I the liquid phase synthesis of inorganic nanoparticals Brain L. Cushing, Valdimir L. Kolesnichenko, Charles J. O* Connor, Chem Rev 104 (2004)3893- 3946.
- 5. Nano composite science and technology, Palical M. Ajayan, Linda S. Schadles, Paul V. Braues, Wiley VCH Verlag WEileim (2003).
- 6. www.eng.vcedu/Ngbeaucag/calsses/XRD/Neutron_diffraction_atLNL.pdf
- 7. Nano particulates as Dring Carriers, Edited by Vladimir P. Torchilin, Imperiacal college press, North Einstein university, USA (2006), ISBN 1 86094 630 5.
- 8. Magnetic materials: Fundamental and device applications Nichola. Ann spaldin, Cambridge University press (2003) ISBN 0521016584.

SEMESTER : VI ELECTIVE PAPER III - A NANOSCALE MATERIALS & DEVICES

Subject Description :

This subject deals with the application material science.

Goal:

To learn about the application and uses of materials in day-to-day life.

Objectives

On successful completion of this subject the student should have

- The knowledge of applied science in practical life.
- ◆ To implement various scientific and mathematical problems with materials science.

B.Sc. Physics with Nanotech. (Colleges-revised) 2008-09

Page 29 of 29

Classification - Thermodynamics and kinetics of plane transformation - synthesis methods - micro structural stability - powder consolidation - physical, chemical. Mechanical properties – catalytic properties – present and potential applications for nano materials.

Unit 2. MAGNETIC NANOMATERIALS

Particulate Nanomagnetis – Geomaterial nanomagnets – Fabrication techniques scalingmagnetic Data storage - Introduction - magnetic - media - properties - materials used - write Heads - Read Heads - Magentroresistance - General- In normal metals and in ferromagnetic materials – future of magnetic data storage.

Unit 3. NANO BIOTECHNOLOGY

Natural nano composites – Introduction – natural nano composite materials biologically synthesized nano structures – biological device and synthetic nano composite – protein based nanostructure formation – biologically inspired nano composite nanotechnology in agriculture (fertilizers and pesticides)

Unit 4. NANO LITHOGRAPHY

(i) Nano lithography techniques

Hug- Resolution E – beam Nanolithogrpahy- Resists exposure metrics – High resolution resists – proximity Effects – Direct warning

(ii) Proximal probe Nanolithography

STM – AEM – DIP pem nano lithography – resist imaging layers for proximal probes – Lang mum – Nano scratching

Unit 5. NANO ELECTRONICS

Basic of Nano electronics - Features of Nano electrons- some physical fundamentals, Basic of information theory - the birth of electronics - The tool for micro and Nano fabrication -Basic of lithographic techniques for nano electronics.

Reference

- 1. Robert W. Kelsall, Mark Geohegan, Ian W. Hamlet, Nano Scale and Technology, John Wiley and sono, 2005 ISBN 0470850868
- 2. Ultra thin magnetic structure III Fundamentals of nano magnetism Jac B1 and B. Heinrich , springer(2004) ISBN 3540219536.
- 3. Magnetic materials : fundamentals and device applications Nicola Ann Spaldin, Cambridge University press (2003) ISBN 0521016584
- 4. Bionanotechnology : Lenons from nature by: Davids Good Sell, Wiley Liss (2004)
- 5. Nanobiotechnology: Protocols, Sadra J. Rosenthal, David W. Write. Series: methods in molecular. Biology (2005)
- 6. John N. Helbert "Hand books of VLSI microlithography" moyer publication, USA 2001.
- 7. James R. Sheats and Bruce W. Amith, "Microlithography Sciences and Technology" Marcell, Dekkar INC New York, 1998.
- 8. Nano electronics and Nanosystems : from transistors to molecular devices K. Goser, P. Glosekolter, J. Deinstall. Springer (2004).

(12 hrs)

(12 hrs)

(12 hrs)

(12 hrs)