Scheme of Examination

<table>
<thead>
<tr>
<th>Part</th>
<th>Study Components</th>
<th>Course title</th>
<th>Ins. hrs/week</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dur.Hrs</td>
</tr>
<tr>
<td>Semester I</td>
<td>I Language – I</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II English – I</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Paper I - Descriptive Statistics-I</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Paper II- Descriptive Statistics-II</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core Practical-1 (using computers – MS – Excel)</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III Allied A : Paper I - Mathematics for Statistics-I</td>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV Environmental Studies #</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Semester II</td>
<td>I Language – II</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II English – II</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Paper III Time series, Index Numbers and Psychological Statistics</td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Practical-I (using computers – MS – Excel)</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Allied A: Paper II Mathematics for Statistics-II</td>
<td></td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV Value Education – Human Rights #</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Semester III</td>
<td>I Language – III</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II English – III</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Paper IV- Demographic methods</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Core Paper V- Probability Distribution-I</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Allied B - Paper I - Computer programming for Statistical Analysis-I</td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Allied Practical (C & C++ programming)</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IV Skill based Subject - Actuarial Statistics - I</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV Tamil @ / Advanced Tamil# (OR) Non-major elective - I (Yoga for Human Excellence)# / Women’s Rights#</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Semester IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>I Language – IV</td>
<td>6</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>II English – IV</td>
<td>6</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>III Core Paper VI - Probability Distribution-II</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Practical</td>
<td>2</td>
<td>3</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>III Allied B : Paper II – Computer programming for Statistical Analysis-II</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>III Allied Practical (C & C++ programming)</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>IV Skill based Subject 2 - Actuarial Statistics - II</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>IV Tamil @ /Advanced Tamil # (OR) Non-major elective -II (General Awareness #)</td>
<td>2</td>
<td>3</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>III Core Paper VII- Statistical inference-I</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III Core Paper VIII- Basic Sampling theory</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III Core Paper IX- Design of Experiments</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Core Practical III(Using statistical software package)</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III Core Paper XII- Numerical Mathematics</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III Elective I</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>IV Skill based Subject 3 - Actuarial Statistics - III</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>III Core Paper X - Statistical inference -II</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III Core Paper XIV Statistical Quality Control</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Core Practical-III (Using statistical software package)</td>
<td>2</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>III Elective II</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III Elective III</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Practicals-IV (Using Calculator)</td>
<td>5</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>IV Skill Based Subject 4 - Actuarial Statistics - IV</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

| V Extension Activities @ | - | - | 50 | - | 50 | 1 |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Total | 3800 | 140 | | | |

@ No University Examinations. Only Continuous Internal Assessment (CIA)
No Continuous Internal Assessment (CIA). Only University Examinations.

List of Elective papers (Colleges can choose any one of the paper as electives)

<table>
<thead>
<tr>
<th>Elective – I</th>
<th>A</th>
<th>Operations Research I</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Mathematical Economics I</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>COBOL Programming</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective – II</th>
<th>A</th>
<th>Elements of Econometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Indian Official Statistics</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Genetical Statistics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective - III</th>
<th>A</th>
<th>Operations Research II</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Mathematical Economics II</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Quantitative Techniques for Managerial decisions</td>
<td></td>
</tr>
</tbody>
</table>
SEMESTER-I Core paper-I

SUBJECT TITLE: DESCRIPTIVE STATISTICS -I

Subject description:
This course introduces the historical development of Statistics, presentation of data, descriptive measurers and fitting mathematical curves to the data

Goal: To enable the students understand and apply descriptive measures in Statistics.

Objective: On successful completion of the course students should have:
known the history of Statistics and
learnt data presentation in various forms

UNIT-I
Origin, scope, limitations and misuse of Statistics-Collection-Classification- Tabulation of data. Diagrammatic representation of data: one dimensional and two dimensional diagrams – graphic representation: line diagram, frequency polygon, frequency curve, histogram and Ogive curves.

UNIT-II
Measures of central tendency: Mean, Median, Mode, Geometric mean and Harmonic mean-Partition values: Quartiles, Deciles and Percentiles-Measures of Dispersion: Mean deviation, Quartile deviation and Standard deviation – Coefficient of variation.

UNIT-III
Moments- measures of Skewness-Pearson’s and Bowley’s Coefficient of skewness, Coefficient of Skewness based on moments – Kurtosis.

UNIT-IV
Curve fitting: principle of least squares, fitting of the curves of the form $y = a+ bx$, $y = a + bx + cx^2$ and curves transformable to the above form.

UNIT-V
Case study and problems relating to all the above units

Books recommended for study:

1. Mills, F.C : Statistical Methods-part I
2. Tara Yamane : Elements of Statistics
SEMESTER-I Core paper-II

Subject title: Descriptive statistics -II

Subject description:
This course introduces measurement of relationship in respect of quantitative and qualitative data and the concept of probability.

Goal: To enable the students understand the descriptive measures and probability

Objective:
On successful completion of the course, students should have understood correlation, regression and probabilities of events.

UNIT-I
 Linear correlation-scatter diagram, Pearson’s coefficient of correlation, correlation in a bivariate table, Rank correlation, Coefficient of concurrent deviation- Regression equations - properties of regression coefficients.

UNIT-II
 Association of attributes: Relation between class frequencies, consistency of data, independence of attributes, criterion of independence, association of attributes: Yule’s coefficient of association, Yule’ coefficient of colligation.

UNIT-III
 Probability: sample space-Concepts of events- Algebraic operations on events- Definitions of probability.

UNIT-IV
 Generalized addition and compound Theorems of probability-independent events –Conditional probability –Baye’s Theorem.

UNIT-V
 Case study and problems related to all the above units

Books recommended for study:
1. Statistical Methods-part I by MILLS, F.C
2. Elements of Statistics by Tara Yamane
3. Fundamentals of Mathematical Statistics by Guptha, S.C and Kapoor V.K
SEMESTER-II

Core paper-III

Subject title: Time series, Index Numbers and Psychological Statistics.

Subject description:
This course introduces the basic Statistical tools in time related variables, economic variables and Psychology

Goal: To enable the students understand index numbers and other Statistical tools applied to Psychological and chorological data

Objective: On successful completion of the course, the students should have:
learnt to measure and analyze the data relating to economics and psychology.

Unit-I: (Time series)

UNIT-II: (Time series)
Seasonal variation- measuring seasonal variation: method of simple averages, ratio to trend method, ratio to moving average method and link relative method- Cyclical and Random fluctuations- variate difference method.

UNIT-II: (Index Numbers)
Index numbers and their definitions - construction and uses of fixed and chain based index numbers-simple and weighted index numbers - Laspeyres’, Paache’s, Fisher’s, and Marshall-edge-worth index numbers – optimum tests for index numbers-Cost of living index numbers.

UNIT-IV : (Psychological Statistics)

UNIT-V
Case study and problems related to all the above units.

Books recommended for study:
1. Applied general statistics by Croxton, F.E & cowden, D.J (Prentice Hall)
2. Fundamentals of applied Statistics by Goon, A.M, Guptha, Das Guptha, B
4. The advanced theory of Statistics by Kendall, M.G and Stuart, A Vol III (Charles criffin)
5. Fundamental statistics in Psychology and education by Guilford T.K
SEMESTER-II
Core practical-I

Descriptive Statistics I&II (Using computers MS-Excel)

1. Formation of frequency distribution. Calculation of arithmetic, geometric mean, median and mode .Calculation of percentile.

3. Calculation of measures of dispersion: Range, Variance, Standard Deviation, Mean deviation, Quartiles.

4. Calculation of Skewness and kurtosis.

5. Problems related to curve fitting.

6. Calculation of correlation and regression coefficients and formation of regression lines

7. Fitting straight line, non-linear trend lines and calculation of trend values using moving averages .

8. Calculation of Index numbers.

Note: students should have exposure in MS -Excel

Three questions are to be answered out of five questions.

For problems: 80 marks
For record: 20 marks
Total : 100 marks

SEMESTER-III
Core paper-IV

Subject title: DEMOGRAPHIC METHODS

Subject description: This course introduces the concepts, methods and analysis of data relating to vital events such as births, deaths… marriage… migration ….

Goal: To enable the students to have an exposure on the application of Statistical methods to analyze the demographic problems.

Objective: On successful completion of the course the students should have understood about registered information of vital events, measurement of the events such as birth and death rates, life tables and population projection techniques.
Unit-I:
Demography – definition - sources of demographic data - population census - demographic surveys -
Registration method: vital registration - population register and other administrative records -
registration of population in India.

Unit-II:
Fertility measurements – crude birth rates - general, specific and total fertility rates - gross and net
reproduction rates and their interpretation.

Unit-III:
Mortality measurements: crude death rate - specific death rate - standardized death rate - infant
mortality rate - maternal mortality rate - case fertility rate - comparative mortality index – force of
mortality – graduation mortality rates - Makeham’s law.

Unit-IV:
Description and construction of various columns of a life table and their relationships -
construction
of an abridged life table – Reid and Pearl method - uses life table – migration - factors effecting
migration- gross and net migration rates.

Unit-V:
Population projection – population estimates and projection – arithmetic geometric and
exponential growth rates - logistics curve and its suitability for graduating population data - Basic
ideas of stationary and stable population

Books for study:
1) Indian Population Problems by Agarwala, S.N (Tata Mc Graw Hill, Bombay)
3) Fundamentals of Applied Statistics by Guptha, S.C and Kapoor, V.K (S.Chand &Co)
4) An introduction to the study of population by Mishra D.E (South India publishers, Madras)
5) Fundamentals of Demography by DR.Hansraj (Surjeet publications Delhi)
6) Principles of Population studies by Asha A. Bende and Tara karitkar (Himalaya publishing

SEMESTER-III Core paper-V

Subject title: PROBABILTY AND DISTRIBUTIONS-I

Subject description: This course introduces the various concepts, functions and properties and
theorems related to random variables.

Goal: To enable the students to understand and study random phenomena mathematically

Objective: On successful completion of the paper the students should have understood
the concepts of random variable, discrete, continuous, joint, marginal, conditional
probability functions, expectation, conditional expectation and variance, generating
functions, law of large numbers and central limit theorem and their applications.

Unit-I:
Random variables –discrete and continuous random variables –distribution function-properties- probability mass function and probability density function –various statistical measures of continuous probability distribution.

Unit-II:
Joint, marginal and conditional distribution functions and density functions- independence of random variables –Transformation of variables (one and two dimensional-concepts only).

Unit-III:
Mathematical expectation-properties-addition and multiplication theorems-cauchy-schwartz inequality, conditional expectation and conditional variance.

Unit-IV:
Moment generating function, cumulant generating function, characteristic function and their properties.

Unit-V:
Tchebychev’s inequality, convergence in probability, weak law of large numbers and central limit theorem

Books for study;
1. Fundamentals of Mathematical statistics by Guptha, S.C &Kapoor, V.K (Sulthan chand &sons)

SEMESTER-III

ALLIED II –Paper I

Subject title: COMPUTER PROGRAMMING FOR STATISTICAL ANALYSIS-1 (C PROGRAMMING)

Subject description: This course introduces structured high level Computer programming Language C

Goal: To enable the students to understand and develop programs in C.

Objective: On successful completion of this course the students should have obtained the capability to develop programs for Statistical problems.

UNIT-I:
Introduction to C – Sample programs – Basic structure of C programs – Programming style – Constant, Variables and data types: Character set- C tokens – key words and identifiers – Declaration of variables – Assigning values to variables.
UNIT – II:

UNIT- III:

UNIT – IV:
Array – One dimensional and two dimensional arrays – Initializing two dimensional array – handling of character strings – declaring and initializing string variables – string handling functions. Pointers – accessing the address of a variable – declaring and initializing pointers – accessing a variable through its pointers – pointers and arrays- Pointer expression.

UNIT – V:

Books for study:
1. Programming in ANSI C by Balagurusamy, E (Tata Mgraw Hill)
2. Let us C by Yaswant Kanetker (BPBpublications New Delhi)

SEMESTER III DIPLOMA PAPER- I

SUBJECT TITLE: ACTUARIAL STATISTICS – I

Subject description: This course introduces the underlying principles, history of life insurance
Goal: To enable the students to understand the sound financial line insurance.
Objective: On completion of this course the students should have understood the principal terms used and major life insurance products covered in Indian life insurance.

Unit – III: Derivation of means and variances of the present values of the payment under simple assurance and annuity contracts assuming constant deterministic interest – simple problems.
Unit IV: Expression in the form of sums for the mean and variance of the present values of benefit payments under simple assurance and annuity contract in terms of the curtate random future life time, assuming that death benefits are payable at the end of the year of death and annuities are paid annually in advance.

Unit V: Derivation of the relations between annuities payable in advance and in arrear, between temporary, deferred and whole life annuities.

Books for study:
CT-5 General Insurance, Life and Health contingencies by Institute of Actuaries of India

SEMESTER IV CORE PAPER VI

SUBJECT TITLE: PROBABILITY AND DISTRIBUTIONS – II

Subject description: This course introduces probability functions for random variables that are defined for different probabilistic situations.

Goal: To enable the students to understand the properties and applications of various probability functions

Objective: On successful completion of the course the students should have understood the applications and nature of the probability distributions such as binomial, poisson, …normal, t, χ^2 and F.

Unit I:
Binomial, Poisson and Negative-Binomial distributions – Moments, m.g.f, cumulants, additive property, recurrence relation for the probabilities- simple problems.

Unit II:
Geometric distribution – moments, m.g.f – Hyper-geometric distribution- mean, variance, m.g.f, Binomial as a limiting form of Hyper-geometric distribution – Multinomial distribution – moments

Unit III:
Normal distribution – limiting form of Binomial distribution, properties, median, mode, moments, m.g.f, cumulants, mean deviation, area property, simple problems – Rectangular distribution-moments, m.g.f. characteristic function, mean deviation – Bivariate normal distribution.

Unit IV:
Gamma, Beta distributions of I kind and II kind – constants – Exponential distribution – additive property.
Unit V:
Functions of normal random variable leading to χ^2, t and F distributions – inter relationship between the distributions and their properties.

Reference
1. Fundamentals of mathematical statistics By Gupta, S.C and Kapoor, V.K., (Sultan chand & sons)

SEMESTER-IV CORE PRACTICAL-II
(Calculator based)

DEMOGRAIC METHODS, PROBABILITY AND DISTRIBUTIONS-I&II

Demographic methods:
4. Fitting Gompertz curve.
5. Fitting logistic curve to population data by the method of Pearl and Reed.
6. Fitting of Logistic curve by Rhodes method.

Probability and Distributions I&II
1. Fitting of Binomial distribution.
2. Fitting of Poisson distribution.
3. Fitting of Normal distribution by the method of ordinates.
4. Fitting Normal distribution by area method.

Three questions are to be answered out of five questions

For problems: 80 marks
For record: 20 marks
Total: 100 marks
SUBJECT TITLE: COMPUTER PROGRAMMING FOR STATISTICAL ANALYSIS-II
(OBJECT ORIENTED PROGRAMMING WITH C++)

Subject description: This course introduces the concept of object oriented programming language
which is a higher version of C programming language

Goal: To enable the students to understand and develop programs in C++.

Objective: On successful completion of this course the students should have obtained the
capability to develop programs for Statistical problems using OOP’s concept

Unit – I:
Principles of OOP, Basic concepts of OOP– Benefits and application of OOP – C++
structure – tokens, expressions and control structures and functions.

Unit – II:
Classes and object – Functions prototyping – call by reference – return by reference –
Inline functions – functions overloading – Friend and virtual functions – specification of class –
member function – private member functions – Arrays within class – memory allocation for
objects – array of objects – static and constant member functions.

Unit – III:
Constructors, Destructors and operator overloading: Constructors – parameterized
constructors – copy constructor – Dynamic constructors – Destructors – Definition of operator
overloading – overloading binary operators – manipulation of strings using operators – Rules for
overloading operators.

Unit – IV:
Inheritance, Pointers, Virtual functions and polymorphism. Derived classes, single and
multiple inheritance, hierarchical and hybrid inheritance, virtual base classes, Abstract classes,
Pointers to objects, pointer to derived classes, virtual functions.

Unit – V:
Files and Templates: File operations – Templates, class templates, function templates,
member function templates.

Books for study:
1) Object oriented programming with C++ by Balagurusamy,E (Tata McGraw Hill)
2) Programming with C++ by D.Ravichandran (Tata McGraw
SEMESTER-IV ALLIED II - PRACTICAL

(C&C++ PROGRAMMING)

Problems:
1. Program to form a frequency distribution for the given data \(x_1, x_2, x_3, \ldots, x_n\), give the number of class intervals \(K\) and the width of the class intervals \(W\).
2. Program to find the arithmetic mean, geometric mean and harmonic mean for the given frequency distribution.
3. Program to find Mean, Variance, Standard Deviation and Coefficient of variation.
4. Program to find the three quartiles \(Q_1, Q_2\) and \(Q_3\) and the coefficient of skewness.
5. Program to find the first four moments about origin \(A\) and to find \(\beta_1, \beta_2, \gamma_1\) and \(\gamma_2\).
6. Program to find simple correlation and regression coefficients for the given bivariate data.
7. Program to fit a straight line of the form \(y = ax + b\) using the principle of least squares to the given bivariate data.
8. Program to fit Binomial distribution.
9. Program to fit a Poisson distribution.
10. Program to arrange one dimensional array of numbers in ascending and descending order.
11. Program to evaluate a matrix polynomial of the type \(aX^2+bX+cI\) where \(X\) is a matrix of order \(3 \times 3\) and \(I\) is an identity matrix and \(a, b\) and \(c\) are constants.
12. Program to solve the given system of simultaneous equations of three variables.
13. Program to open a file and store data in it and to read and display the data from the file

**
For problems: 40 marks
For record : 10 marks
Total : 50 marks

Two questions to be answered with internal choice one from C and one from C++

SEMESTER-IV
DIPLOMA PAPER II

SUBJECT TITLE: ACTUARIAL STATISTICS – II

Course number:
Number of credit hours: 3(Three)

Subject description: This course introduces the types of life insurance products and premium calculations

Goal: To enable the students to gain more knowledge in life insurance products.

Objective: On completion of this course the students should have understood various concepts relating to insurance policy
Unit - I: Calculation of Premium – net single premium, deferred annuities, calculation of level premiums, calculation of Gross Premium, Expenses on the basis of variation – distribution of the expenses over the period of policy.

Unit – II: Calculation of net premium reserves of simple insurance contracts using ultimate or select mortality, net random future loss under an insurance contract – principle of equivalence.

Books for Study:
2) Ready Reckoner for LIC premiums, Garuda Publications.
3) IC-02 (Revised) Practice of life assurance by S.Balchandran Insurance Institute of India
4) CT-5 General Insurance, Life and health contingencies, Institute of Actuaries of India.

Semester V Core Paper VII
Subject title: STATISTICAL INFERENCE – I

Subject description: This course introduces concepts, methods and properties relating to estimation

Goal: To enable the students to understand and apply various estimation procedures

Objective: on successful completion of this course the students should have understood the concepts of Point estimation and interval estimation, and their properties, calculation of partial and multiple correlation coefficients and multiple linear regression line.

Unit I Concept of Statistical Inference- Parametric estimation- Sampling distribution - Standard Error. Derivation of Standard Error of mean, variance, proportion, difference between means variances and Proportions-concept of ordered statistics.
Unit II

Unit III
Methods of point estimation: method of maximum likelihood, method of minimum chi-square and method of moments - properties of estimators obtained by these methods (Without proof).

Unit IV
Interval Estimation: Fiducial limits-derivation of confidence intervals based on Normal,‘t’ χ^2 and F distributions. Confidence intervals- using Cramer – Rao inequality-Partial and multiple correlation and regression coefficients – Multiple linear regression lines.

Unit V
Numerical problems in interval estimation, multiple and partial correlation and regression. –simple problems only

Books for study:
1. Introduction to mathematical statistics by Hoel P.G : (Wiley International)
2. Statistical methods by Snedecor, GW and Cochran, WG (Oxford and I B H)
3. Introduction to mathematical Statistics by Hogg V and Craig .R (Amerind)
4. Theory and application of Statistics Vol. II by Ramasamy, M.M :
5. Introduction to Mathematical Statistics by Brunk, H.D (Ginn and Co.)
6. A first Course in Mathematical Statistics by Weather Burn CE (Cambridge University press)

SEMESTER-V CORE PAPER-VIII
SUBJECT TITLE: BASIC SAMPLING THEORY

Subject description: This course introduces the concept, methods and analysis of sampling techniques
Goal: To enable the students to understand and apply the sampling procedures to different situations
Objective: On successful completion of the course the students should have understood sample and census surveys, errors that occur in surveys and various sampling methods and the different types of populations to which these sampling methods are applicable.

Unit-I:
Sampling from a finite population –Random sampling –simple sampling with and without replacement –unbiased estimates of the mean and the variance of the population and of the variance of the estimator of the mean - Estimation of the sample size.
Unit-II: Stratified sampling – proportional and optimum allocation with regard to stratified random sampling - unbiased estimates of the mean and the variance of the population and of the variance of the estimator of the mean.

Unit-III: Systematic sampling – Unbiased estimates of the mean and the variance of the population and of the variance of the estimator of the mean.

Unit-IV: Cluster and two stage sampling – unbiased estimates of the mean and variance of the population and of the variance of the estimator of the mean.

Unit-V: Design, organization and execution of sample surveys – sampling and non-sampling errors and methods to deal with sampling errors.

Books for study:
1. Sampling Techniques by Cochran, W.G (Wiley Est)
2. Sampling theory of survey with applications by Sukathme P.V and sukathme B.V (Asia pub.House)
3. Sampling theory and Methods by Murthy, M.N (Statistical publishing)

SEMIESTER-V CORE PAPER-IX

SUBJECT TITLE: DESIGN OF EXPERIMENTS

Subject description: This course introduces various experimental designs, selection of appropriate designs in planning a scientific experimentation

Goal: To enable the students to understand the principles of experimentation and employ suitable designs in experiments

Objective: On successful completion of this course the students should have understood the concept of analysis of variance, to compare more than two treatments with the help of F distribution for various designs employed, to estimate missing observations, to compare the efficiencies of various designs and the concept of ANCOVA

Unit-I: Linear design models - Least Square estimates of parameters and variance of estimates – Analysis of variance: One way and two way classifications.

Unit-II: Fundamentals of experimentation: Plot and pen techniques – determination of shape and size of plots – Uniformity trials – Replication, randomization and local control techniques
Unit-III:
Analysis of different experiments: CRD, RBD and LSD and their efficiencies

UNIT-IV:
Missing plot techniques (atmost two values)-Analysis of covariance (ANCOVA) with one concomitant variable to CRD and RBD.

Unit-V:
Factorial designs -$2^2, 2^3$ and 3^2 factorial designs with and without confounding.

Books for study:
1. Experimental designs by Cochran W.G and Cox G.M (john Wiley)
2. Experimental design: Theory and applications by Federar, WT (Oxford and IBH)
3. Statistical theory in research by Anderson RL and Bangrtt TA (McGraw HILL)
4. The design of Analysis of Experiments by Kempthrone,B (Wiley Eastern)

SEMESTER V CORE PAPER X
SUBJECT TITLE: NUMERICAL MATHEMATICS

Subject description: This course introduces the concepts and methods to analyze numerical data

Goal: To enable the students to establish mathematical functions using numerical data

Objective: On successful completion of the course the students will be able to estimate functional relationship, interpolate and extrapolate the value of dependent variable, find maxima and minima using differentiation, and integral value of the estimated function and sum the given series

Unit I
Finite differences – difference of a polynomial, factorial polynomial- Interpolation for equal intervals – Newton-Gregory forward and backward interpolation formulae.

Unit II
Central difference interpolation formulae, Gauss forward and backward formulae, Stirling’s, Bessel’s and Laplace – Everett’s formulae, summation of series.

Unit III
Interpolation for unequal intervals: Newton's divided difference formula and Lagrange’s formulae, Inverse interpolation.

Unit IV
Numerical differentiation and integration- Numerical differentiation up to second order, maxima and minima- Numerical integration : Trapezoidal, Simpson’s 1/3 rd and 3/8 th rules
Unit V

References
1. Introductory Methods of Numerical Analysis by Sastry, SS (1998), (Prinitce Hall of India, New Delhi. Third Edn),

SEMESTER –V DIPLOMA PAPER III
(FOR THE B.SC. STATISTICS STUDENTS ADMITTED DURING 2007-08 AND ONWARDS)
SUBJECT TITLE: ACTUARIAL STATISTICS – III
Course number: Number of credit hours: 3(Three)

Subject description: This paper introduces business, economic and political environments relating to Indian life insurance.

Goal: To enable the students to have exposure on various acts relating to insurance business environment.

Objective: On completion of this course the students should have understood the effect of general insurance business environment in India including the impact of level of risk to the insurer.

Unit– III: Political Environment, Pollution-age profile, Income and savings, education, health, Employment spending and saving patterns, Readership, ethos and culture

Unit – V: Constant force of mortality, Mortality, characteristics, shape of \(q_x \), \(l_x \), and \(dx \). Evaluation of means and variance with and without life table.

Books for study:
1. IC-12 Insurance Business Environment, By S.Balachandran Insurance Institute of India
2. CT-5 General Insurance, Life and health contingencies, Institute of Actuaries of India.

SEMESTER-VI CORE PAPER-XI

SUBJECT TITLE: STATISTICAL INFERENCE-II

Subject description: This courses introduces the concepts of hypothesis testing

Goal: To enable the students to give inference on statistical population based on sample statistics

Objective: On completion of the course the students should have gained knowledge on the methods of testing the hypothesis on different distributions and also the nature of statistics to which such test procedure can be used

Unit-I: Testing of Statistical hypothesis: Statistical hypothesis -simple and composite hypothesis, null and alternative hypotheses-sample and parameter space –two types of errors – critical region-power a test –Neyman- Pearson Lemma –simple applications

Unit-II: Most powerful tests-uniformly most powerful and unbiased tests based on Normal, t, and \(\chi^2 \) and F distributions (without proof)-likelihood ratio criterion –definition and simple applications

Unit –III: Test of significance –Asymptotic and exact tests based on Normal, t, and \(\chi^2 \) and F distributions with regard to mean, proportion, variance, Standard deviation, coefficient of correlation, regression coefficients, partial and multiple correlation coefficients-Concept of observed significance level.

Unit-IV: Contingency table –Test for independence by contingency tables –goodness of fitness tests –tests of homogeneity of variances, correlation and proportions .Test of Normality (application only).

UNIT-V: Elementary ideas on distribution –free and non-parametric tests –Run, Median, Sign and Mann Whitney tests (without proof)-Equality of two distributions.

Books for study
1. Introduction to Mathematical statistics by Hogg, R.V and Craig, AG (amrend)
2. Introduction to Mathematical statistics by Hoel, P.G (Wiley International)
4. Introduction to Mathematical Statistics by Brunk .H.D (Gann Co)
5. Practical Non-parametric Statistics by Conover (wiley International)
6. Fundamentals of Mathematical statistics by Guptha S.C and Kapoor V.K(Sulthan chand &sons)
Subject description: This course introduces the application of statistical tools on industrial environment to study, analyze and control the quality of products.

Goal: To enable the students to know the concepts of process control and product control.

Objective: On successful completion of the course, the students should have understood various tools used such as control charts, sampling plans, quality system standards, and reliability concepts to control the quality of industrial outputs.

Unit I: Need for SQC – Role of frequency distribution – Statistical basis for SQC – variable control charts – \bar{X}, R, and σ charts.

Unit II: Control Chart for attributes – np, p, c and u chart – Group control chart, OC and ARL of control charts, CUSUM charts using V-mark and decision intervals (concepts only).

Unit III: Acceptance sampling for Attributes – Single sampling plan – Double sampling plan – OC, AOQ, ASN and ATI curves – sequential sampling plan and their properties.

Unit V: Reliability concepts and measures, components and systems, reliability function, hazard rate, common life distribution viz, exponential, gamma and weibull.

Books for study:
1. Fundamentals of Applied statistics by Gupta S.C and Kapoor, V.K –
2. Quality control and Industrial Management by Dunkan A.J.(Richard D.Irwin Inc.USA)
3. Statistical Quality Control by R.S. Leaven worth (Mc Graw Hill)

Semester-VI CORE PRACTICAL III
(USING STATISTICAL SOFTWARE PACKAGE)

Unit I:
Essential terminology for all SPSS users-getting to SPSS for windows - the components of window - SPSS for windows screens – crucial preliminaries-entering data into SPSS-editing data-saving data file-retrieving data file.
Unit II:
Merging data files – adding scores to existing cases – add variables – running a simple analysis and obtaining the output.

Unit-III
Checking the data – Box plots of score distributions – listing of the data using case summaries – graphs – bar, line, pie chart, scatter plots and histograms.

Unit IV
Frequency distribution – measures of frequency distributions – cross tabulations – obtaining two sample chi-square tests – log linear analysis – parametric statistical tests – comparing means paired and unpaired t-tests

Unit V
Correlation and multiple regression – analysing nominal and ordinal data – non parametric analysis – Wilcoxon, mann-whitney, Kruskal Wallis tests – ANOVA: one way

Books for study and reference

Three questions are to be answered out of five questions

For problems: 80 marks
For record: 20 marks
Total: 100 marks

SEMESTER-VI
CORE PRACTICAL PAPER-IV (USING CALCULATOR)

Problems:
UNIT-I
Statistical inference-1:
1. Estimation of parameters of the distribution by the methods of moments and maximum likelihood with regard to discrete and continuous distributions
2. Confidence intervals based on Normal, χ^2, t and F distributions
3. Determination of partial and multiple correlation coefficients – Multiple linear regression line and linear prediction involving three variables when the sums of squares and products are given.
UNIT-II

Basic sampling theory:
1. Estimation of mean and variance of the population and the variance of the estimator of the mean using Simple random procedure.
2. Stratified random sampling – Estimation of mean and variance of the population and of the variance of the estimator of the mean under proportional and optimum allocation.
3. Systematic sampling.

UNIT-III

Design of experiments:
1. Analysis RBD and LSD layouts
2. Missing plot techniques in RBD and LSD
3. Analysis of $2^2, 2^3$ and 3^2 factorial designs with and without confounding.
4. Analysis of covariance with one concomitant variable to RBD.

UNIT-IV:

Statistical inference-II:
1. Standard Normal and exact tests of significance with regard to mean, variance, proportion, correlation and regression coefficients and partial multiple correlation coefficients
2. Test for homogeneity several variances-Bartlett test

Statistical quality control:
1. Control chart for attributes and variables: \bar{X}, R, p, np and c charts
2. Single sampling plan for attributes: OC, ATI, AOQ curves.

Three questions to be answered out of five questions.
One question to be asked from each unit.

For problems: 80 marks
For record: 20 marks
Total: 100 marks

SEMESTER -VI

DIPLOMA PAPER IV

(FOR THE B.SC STATISTICS STUDENTS ADMITTED DURING 2007-08 AND ONWARDS)

SUBJECT TITLE: ACTUARIAL STATISTICS – IV

Course number:
Number of credit hours: 3(Three)

Subject description: This paper introduces various types of risk and concepts relating to retirement benefits.
Goal: To enable the students to know the basic features of various insurance instruments.
Objective: On completion of the course the students should have gained knowledge in basic principles of insurance.
Unit–I: Concept of Risk – Peril and hazard – Different types of risks – classifications of risks – risk management – self insurance – advantages – IFRIMA

Unit–IV: Multiple decrement table – Dependent and independent rates – Obtaining dependent rates from independent rates – Independent rates form dependent rates.

Unit–V: Pension benefit and concentration – Accrued benefit – Age retirement benefit – future service benefit – ill–health retirement benefit – Death in service benefit.

Books for study:
1. IC-01 Principles of insurance By P.J Majmudar and M.G Diwan, Insurance Institute of India.
2. CT-5 General Insurance, Life and health contingencies, Institute of Actuaries of India.

**SEMESTER V ELECTIVE I - A
OPERATIONS RESEARCH – I**

Subject description: This course introduces the concepts, models and problem solving techniques of optimization problems

Goal: To enable the students gain knowledge about various optimization techniques

Objective: After completion of the course the students will be able solve problems related to business and industry using linear programming techniques, Transportation and Assignment models.

Unit I: Origin, Meaning and Scope of operations Research –operations research model building, their types and the outline of the methods of solution.

Unit II: Linear programming: optimization problem - programming problem – solution by graphical method, simplex method – slack , surplus and artificial variables - Improving a basic feasible solution- optimality conditions.

Unit III: Degeneracy (Concept only) and breaking ties – Charnes's Big M – technique-conversion of a minimization problem to a maximization problem.

Unit V : Assignment problem: The assignment problem as a special case of the transportation problem – traveling sales man problem.

Books recommended
1. Linear programming methods and applications by Gass SI (MC Graw Hill)
2. Linear programming by Loomba : (Tata MC Graw Hill)
3. Fundamentals of operations Research by Ackoff, R.I And Sasieni, MW : (Wiley International)
4. Operations Research – Methods and problems by Sasieni, Yaspen and Friedman (wiley International)
5. Operations Research by Kanti Swarup, Gupta PK and Manmohan (Sultan Chand and Sons)

(Teory 50% and problems 50% be asked in the question paper)

ELECTIVE I - B: MATHEMATICAL ECONOMICS–I

Subject Description: This paper introduces the concepts of Economics and Mathematics for the students of Statistics

Goal : To enable the students to learn the application of Mathematical tools in Economics

Objective : On successful completion of this course the students gain knowledge in the application of Mathematical models in Micro Economics.

UNIT II : Scale of preferences – indifference curve and their properties – indifference map – utility index – price effect, income effect and substitution effect with respect to indifference curve analysis – Giffen’s Paradox.

UNIT IV : Cost function and curve – Average, Marginal and overhead costs – short term and long term costs – normal cost conditions – cost elasticity – comparison of market value and normal value.

Books Recommended:

3. Metha and Madnani : Mathematics for Economists (Sultan Chand & Sons
4. Koores EF : Elements of Mathematical Economics (Houghton Migfia Co. 1965)
6. Dewett, KK : Modern Economic Theory

ELECTIVE 1 - C : COBOL PROGRAMMING

Subject Description: This paper introduces the concepts of programming through COBOL language

Goal : To enable the students to learn applications of business oriented problems using data structure.

Objective : on successful completion of this course the students shall enrich knowledge in COBOL programming and processing sequential data

UNIT – I (SECTION 3 AND 4)
Introduction to COBOL – Coding format for COBOL Program- Structure of a COBOL Program – character set – COBOL word Data Name and Identifiers – Literals – Figurative constant continuation of Lines – Language Description Notations – Identification Division – Environment Division.

Unit – II (SECTION 5 AND 6)

UNIT –III (SECTION 8 and 9)
UNIT – IV (SECTION 10 AND 11)
Condition – If Statement – Goto with Depending phrase – Perform Statement – Exit Statement –
Table Handling – Occurs Clause and subscription – Assigning values Table Elements –
Multidimensional Tables – Perform Verb and Table Handling.

UNIT – V (SECTION 13)
Sequential files – File characteristics – File control Entries – File Description – Statements for
sequential files Sequential file with variable length Records – Application Programs Payroll
Processing Mark sheet Preparation, Electricity Bill Preparation.

Books Recommended
Graw Hill, New Delhi, 1998

ELECTIVE II - A
ELEMENTS OF ECONOMETRICS

Subject description: This course introduces the application of statistical methods to economic
phenomena.
Goal: To enable the students to establish and verify economic relationships

Objective: On successful completion of the course the students should have understood
 econometric Model, estimation and testing of parameters, forecasting and verification
of economic theory and application of models in planning.

Unit I: Definition-Scope-objectives of Econometrics-Limitations-Divisons of Econometrics.

Unit II: Single equation model two variable case-Reasons for introducing error term in the
model-least square method of estimation and testing of parameters of the model-Estimation of
error variance –Simple problems.

Unit III: General linear model-Assumptions –Least square method of estimation and testing of
the parameters of the models –problems under failure of assumptions.

Unit IV: Multicollinearity- Effects of multicollinearity – detecting multicollinearity – Remedies
–Autocorrelation-sources of autocorrelation- Dubin-watson test-Dummy variables (concept only)-Specification errors.

Unit V: Econometric models in planning: Mahalanobis four sector model-criticism of the model-
problems-problems relating to three variable linear model and test for auto correlation.

Books for study:
1. Econometrics Basic and applied by Aaron C Johnson Jr,Marvin B Johnson and Rueben C Buse
(Maxwell Maxmillan Intl editions)

3. Theory of Econometrics by Koutsoyannis, A (Palgrave publications Ltd)
4. Econometrics and Mathematical Economics by S.P Singh, Anil K. Parashar and H P Singh (S.Chand & Co.)

ELECTIVE II - B: INDIAN OFFICIAL STATISTICS

Subject Description: This paper gives an idea about various methods in which Statistics are being collected in different sectors.

Goal: To enable the students to understand how the statistics are collected, recorded and published.

Objective: On successful completion of this topic a student will have a knowledge about the statistical organizations, NSSO etc and the methods of collecting and recording statistics in different sectors such as agriculture, industry etc.

UNIT III: Price statistics – Price index numbers – Labour Bureau; Index number of Retail prices – Indices of security prices.

Books Recommended:
1. Gupta SP: Statistical Methods (Sultan Chand & Sons)
2. Saluja MR: Indian Official Statistical System (Publication of Indian Econometric Society)

ELECTIVE II - C: GENETICAL STATISTICS

Subject Description: This paper introduces the concepts of genetics and application of various statistical tools in genetics.

Goal: To enable the students to understand how to plan the experiments statistically and apply Statistical methods.
Objective: On successful completion of this course the students shall enrich knowledge in genetics and have job opportunities.

UNIT III: Use of χ^2 (chi-square) tests in testing the Mendel’s segregation law - Sex linked genes – Concept of gene frequency – concept of random mating detection and estimation of linkage from back cross, F$_2$, & F$_3$ data.

UNIT IV: Method of maximum likelihood and other methods of estimation- Planning of experiments.

UNIT V: Multiple allelic systems- Elementary aspects of the study of human blood group.

Books Recommended:
1. Sinet Dunn and Dot Zansky: Principles of Genetics
2. Mather and Jinks: Biometrical Genetics
4. Kempthorne C: Introduction to Genetic Statistics (John Wiley)

ELECTIVE III - A OPERATIONS RESEARCH – II

Subject description: This course introduces the concepts, models and problem solving techniques of optimization problems.

Goal: To enable the students gain knowledge about various optimization techniques.

Objective: After completion of the course the students will be able solve problems related to business and industry using Network analysis, Sequencing, Replacement problems, Game theory, Decision analysis…

Unit II: Sequencing: Introduction – n jobs and two machines, n jobs and three machines, n jobs and m machines – idle times and total elapsed time calculations.

Unit III Replacement Problem: Replacement models and their solution: Replacement of items whose maintenance costs increase with time and the value of money remains same during the period – Replacement of items whose maintenance costs increase with time and the value of money also changes with time, Replacement of items that fail completely: individual and group replacement policy – simple problems.

Unit IV: Game Theory: Description of games - solving the rectangular, two person, zero sum games: Saddle point and dominance methods - Graphical methods for 2xn and nx2 game problems.

BOOKS for study:
1. Linear programming methods and applications by Gaus SI (Mc Graw Hill)
2. Linear programming by Loomba (Tata Mc Graw Hill)
4. Operations Research – Methods problem by Sasieni, Yaspens and Friedman (wiley international)
5. Operations Research by Kanti swarup, Gupta, P.K and Manmohan (Sultan Chand and sons)

(Theory 50% and problems 50% be asked in the question paper)

ELETIVE III - B: MATHEMATICAL ECONOMICS-II

Subject Description: This course introduces the concepts of Economics for the Students of Statistics

Goal: To enable the students to learn the application of Mathematical tools in Economics

Objective: On successful completion of this course the students shall enrich knowledge in the application of Mathematical models in Macro Economics.

UNIT I: National income – Methods of estimation – uses of National income estimates – Computational difficulties in India.

UNIT II: Income distribution – Inequalities of income causes of inequalities and remedies for reducing inequalities – Pareto’s law and Pareto’s distribution – Properties
and uses – Fitting Pareto’s Curve – Lognormal distribution – Lorenz curve approach.

UNIT IV : Propensity to consume – models of multiplier and accelerator – Harrod – Domar growth models – Cobweb model.

UNIT V : Leontief’s input output analysis – closed and open systems – Dynamic version of this model.

Books Recommended:
2. Allen RGD : Mathematical Analysis for Economists (Macmillan)
6. Seth M L : Planning of India

ELETIVE C: QUANTITATIVE TECHNIQUES FOR MANAGERIAL DECISIONS

Subject Description: This paper introduces various concepts and methods related to financial accounting, analysis and forecasting.

Goal : To enable the students to learn various techniques for quantitative decision making.

Objective : On successful completion of this course the students will have the ability to handle financial data more scientifically.

UNIT I : Basic principles of accountancy and analysis of balance sheets

UNIT II : Tools of financial analysis-Flow of funds, analysis-Cost, Volume, Profit analysis

UNIT III : Analysis of operating and financial leverages.

UNIT IV : Approaches to financial forecasting.
UNIT V : Project analysis.

Books Recommended:

2. Development : Manual of Industrial Project Analysis in
Centre of the Developing countries.
Organization for
Co-operation and Development, Paris
3. Foreign and : Project Appraisal: check Lists and Discounting
Common Wealth Tables.
Office (London)