B.Sc. CS/IT/CT/SS/MM/CSA &BCA 2017-18onwards

Annexure No: 26A Page **1** of **3** SCAA DT: 03.07.2017

BHARATHIAR UNIVERSITY: COIMBATORE-641 046 B.Sc. CS/IT/CT/SS/MM/CSA &BCA degree courses

(For the students admitted from the academic year **2017-2018** and onwards)

CBCS PATTERN

The syllabus for CORE 2: DIGITAL FUNDAMENTALS AND COMPUTER ARCHITECTURE for BSc CS, IT, CT, SS, CSA, MM & B.C.A degree courses and

SKILL BASED SUBJECT- 4 SOFTWARE TESTING LAB for B.Sc. Computer Science degree course- papers are revised and furnished below be followed and there is no change in the scheme of examination and syllabi of remaining papers

Course	BSc CS, IT, CT, SS, CSA, MM & B.C.A (Regular)
Effective	2017-2018 and Onwards
from	
Semester	I
Subject	CORE 2:
	DIGITAL FUNDAMENTALS AND COMPUTER ARCHITECTURE

Subject Description: This subject deals with fundamentals of digital computers, Microprocessors and System architecture.

Goal: To learn about Computer Fundamentals and its Architecture.

Objective: On successful completion of this subject the students should have Knowledge on Digital circuits, Microprocessor architecture, and Interfacing of various components.

UNIT I: Number System and Binary Codes: Decimal, Binary, Octal, Hexadecimal – Binary addition, Multiplication, Division - Floating point representation, Complements, BCD, Excess3, Gray Code. Arithmetic Circuits: Half adder, Full adder, Parallel binary adder, BCD adder, Half subtractor, Full subtractor, Parallel binary subtractor - Digital Logic: the Basic Gates - NOR, NAND, XOR Gates.

UNIT II: Combinational Logic Circuits: Boolean algebra – Karnaugh map – Canonical form 1 - Construction and properties - Implicants - Don't care combinations - Product of sum, Sum of products, simplifications. Sequential circuits: Flip-Flops: RS, D, JK, and T -Multiplexers – Demultiplexers – Decoder Encoder – shift registers-Counters.

B.Sc. CS/IT/CT/SS/MM/CSA &BCA 2017-18onwards

Page 2 of 3 SCAA DT: 03.07.2017

UNIT III: Input - Output Organization: Input - output interface - I/O Bus and Interface -

Annexure No: 26A

I/O Bus Versus Memory Bus - Isolated Versus Memory - Mapped I/O - Example of I/O

Interface. Asynchronous data transfer: Strobe Control and Handshaking

UNIT IV: Priority Interrupt: Daisy- Chaining Priority, Parallel Priority Interrupt. Direct

Memory Access: DMA Controller, DMA Transfer. Input - Output Processor: CPU-IOP

Communication.

UNIT V: Memory Organization: Memory Hierarchy – Main Memory- Associative memory:

Hardware Organization, Match Logic, Read Operation, Write Operation. Cache Memory:

Associative, Direct, Set-associative Mapping – Writing into Cache Initialization.

TEXT BOOKS:

1. Digital Electronics Circuits and Systems, V.K. Puri, TMH.

2. Digital principles and applications, Albert Paul Malvino, Donald P Leach, TMH, 1996.

3. Computer System Architecture -M. Morris Mano, PHI.

REFERENCE BOOKS:

1. Computer Architecture -M. Carter, Schaum's outline series, TMH

B.Sc. CS/IT/CT/SS/MM/CSA &BCA 2017-18onwards Annexure No: 26A
Page **3** of **3**SCAA DT: 03.07.2017

For B.Sc Computer Science degree course SKILL BASED SUBJECTS (2017-18 onwards)

SKILL-4-CS: SOFTWARE TESTING LAB

Write at least 10 TEST CASES for the following programs. Test cases can be for Input data, Conditional expressions, control transfer, output, etc. Run-Test-Debug- until all the test cases are in success status. Marks distribution as follows:

- 1. List of Test Descriptions (at least 10) for the Program. (20%)
- 2. Test Cases (40%)
- 3. Program with all test case results success (30%)
- 4. Record (10%)

TEST CASE EXAMPLE:

Test	Test Description	Test Steps	Expected	Actual	Status
-Id			Output	Output	
TC-01	Acceptance of 10 digit	Input 10	Accepting 10	Accepted 10	Success
	input data	Digit	digit number	digit number	
		Number			
TC-02	Non- acceptance of	Input a	Character X	Accepting	Failure
	character data	character	should not be	Character	
		data X	accepted	data	

Modify PIC X(10) into PIC 9(10) and then run program for Test-id TC-02 again.

TC-02	Non- acceptance of	Input a	Character X	Character	Success
	character data	character	should not be	data not	
		data X	accepted	accepted	
TC-03	Digit sum of 10	Output data	Single digit	Single digit	Success
	digit is in single		sum	Sum	
	digit				

- 1. Test the C program: Finding the sum of individual digits of a 10-digit number until a single digit is produced.
- 2. Test the C Program: Accept the inputs student name, marks in five subjects and declare the result as PASS if the student gets minimum 40 in each subject; otherwise declare the result as FAIL.
- 3. Test the C program: Program for generating n prime numbers
- 4. Test the C program: Sort and store the elements of two arrays of integers into the third list.
- 5. Test the C program: Experiment the operations of a stack using array implementation.
- 6. Test the C program: Menu-driven option for queue operations like add, remove and display.
- 7. Test the C++ program: Palindrome string checking program (using pointers)