BHARATHIAR UNIVERSITY, COIMBATORE -641 046

The syllabus for the following papers furnished below be followed for the candidates admitted from the Academic Year 2017-18 onwards and there is no change in the syllabi of remaining papers

CORE I - CHEMISTRY PAPER I

(2017-18 batch for UG CHEMISTRY)

Teaching hours : 60 hours per semester Subject Description : This paper presents the basic principles of Chemistry. Goals : To enable the students to learn about the basic principles of Chemistry. Objective : To understand the important concepts of Chemistry.

UNIT- I

1.Periodic table-Introduction-Periodic properties- Ionisationenergy,Electronaffinity,Electronegativity and their variations along the period and groups.

2. Hybridization and geometry of BeCl₂, BF₃, CH₄, PCl₅, IF₇ and SF₆. VSEPR Theory. Covalent Bond-Molecular orbital theory-application tomolecules such as H_2^+ He₂, F_2 , O_2 , N_2 , CO and NO.

UNIT- II

1.Nomenclature of acyclic alkane, alkene and alkyene.

2.Alkenes: Preparation by Wittig reaction – Mechanisms of beta elimination – E1, E2 and cis elimination – Hoffmann's rule and Saytzeff's rule. Addition reactions with hydrogen, halogen, hydrogen halide (Markownikoff's rule) and hydrogen bromide (Peroxide effect).Dienes: Stability of isolated and conjugated dienes-1, 2 and 1, 4 additions, Diels -Alder reaction. Free Radical addition – Polymerization – synthetic rubber

3.Alkynes: Acidity of Alkynes – formation of acetylides-addition of water with HgSO4 catalysthydroboration

UNIT- III.

1. Polar effects – inductive effect, mesomeric effect, electromeric effect, hyper conjugation and steric effects. Classification of reagents: Electrophiles, Nucleophiles and Free radicals. Types of reaction: Polar reactions involving carbonium ions and carbanions with simple examples.

2. Aliphatic Hydrocarbons: Restricted rotation about single bond preferred rotationalconformations.

3.Cycloalkanes: Preparation by Dieckmann ring closure and by reduction of aromatic hydrocarbons – ring opening reactions of cyclopropane with H₂, Br₂ and HI.

B.Sc .Chemistry- 17-18 onwards-colleges Page **2** of **10**

Annexure No: 18A SCAA Dated: 03.07.2017

UNIT IV

1 Liquid crystals-the concept of mesomorphic state-typical liquid cryatalline substances and their properties.

2.Failure of classical theory in explaining black body radiation- Planck's theory of quantization of energy – Einstein theory of photoelectric effect-Compton effect. deBroglie theory of wave-particle dualism . Particle in one dimensional box (Wave length determination only) UNIT V:

The laws of thermodynamics, generalities and Zeroth law – kinds of energy – Scope of the first and second laws of thermodynamics-thermodynamic terms-definitions – heat – work of expansion – work of compression – maximum and minimum quantities of work – Reversible and irreversible transformations of energy. First law of thermodynamics – properties of energy changes in relation to properties of system- isothermal and adiabatic changes – meaning of the thermodynamic state function – properties of exact and inexact differentials – Joule Thomson experiment

CORE II - CHEMISTRY PAPER II

Teaching hours: 60 hours per semester Subject description: This paper presents the concept of coordination chemistry, aromaticity and thermodynamics. Goals: To enable the students to learn about acids and bases, aromaticity, and thermodynamics Objectives:To study the principles of acids and bases and thermodynamics.

Unit- I

Acids and bases; Definitions- different approaches to protonic acid – base systems –strengths of Lewis Acids and Bases -Hard and Soft Acids and Bases.Applications of HSAB concept Basis of hardness and softness, limitations of HSAB concept.

Unit- II:

Chemistry of Boron family – Group discussion – Electron acceptor behaviour and electron deficiency of boron hydrides; bonding in diboranes; NaBH₄ and borazole - preparation, properties, structure and uses.

Silicates-Classification of silicate- simple silicates chain silicates and sheet silicates only.

Unit III:

Structure of benzene-Aromaticty-Huckel's rule.Electrophilic substitution in benzene with mechanism. -Nucleophilic substitution reaction $-S_N1$, S_N2 and S_Ni reactions – Grignard reagents and synthetic applications-Elimination versus substitution-Benzyne mechanism and intermediate complex mechanism.

B.Sc .Chemistry- 17-18 onwards-colleges Page **3** of **10**

Unit IV:

Relation between E and H, Cp and Cv. Application of the first law of thermodynamics to chemical reactions. The heat of reaction – conventions in the values of H. The determination of heats of formation – sequences of reactions.

Unit V:

Hess's law – heats of combustion – determination by Bomb Calorimeter – Bond energies – Resonance energies – Heats of solution – integral and differential heat of dilution – Heats of reaction at constant volume – dependence of the heat of reaction on temperature and Kirchoff's equation.

TEXTBOOKS FOR REFERNCE:

- 1. Principles of Inorganic Chemistry, B.R. Puri L.R. Sharma, ShobanlalNagin Chand & Co.
- 2. Inorganic Chemistry, P.L.Soni, Sultan Chand & Sons.
- 3. Organic Chemistry, Vol. 1, 2, 3, S. M. Mughergee, S.P. Singh, R.P. Kapoor, Wiley Eastern.
- 4. Advanced Organic Chemistry, B.S. Bahl, Arunbahl, S.Chand& Co.
- 5. Essentials of Physical Chemistry, B.S. Bahl and G.D. Tuli, S.Chand& Co.
- 6. Text book of Physical Chemistry, P.L.Soni, D.B. Dharmarke, Sultan Chand & Sons.
- 7. Physical chemistry, G. N. Castellan, Addison-Wesley Pub. Co.

CORE IV - CHEMISTRY PAPER III

Teaching hours: 45 hours per semester (3 hours per week)

Subject description: This paper presents the principle in the extraction of metals and mechanism of some important organic reactions.

Goals: To enable the students to learn about the extraction principles and mechanism of some addition reaction.

Objectives: To understand the mechanism and synthetic uses of important organic reactions.

Unit I:

General methods of Extraction: Concentration – Gravity separation, Froth Floatations magnetic separation, Extraction – Chemical and Electrolytic methods of refining, Zone refining, Van Arkel refining and Electrolytic refining with examples. Occurrence, extraction, properties and uses of Germanium and Titanium - their important compounds such as GeCl4 and TiO₂

Unit II

Chemistry of Carbonyl Compounds – I: Reaction mechanisms: Nucleophilic addition of Grignard reagent, NH₃, primary amine- Aldol condensation, Cannizzaro reaction, Perkin reaction, Knoevanagel reaction and Claisen- Schmidt reaction.

B.Sc .Chemistry- 17-18 onwards-colleges Page **4** of **10** Annexure No: 18A SCAA Dated: 03.07.2017

Unit -III

Chemistry of Carbonyl Compounds – II Reaction mechanisms – Reformatsky reaction, benzoin condensation, Wittig reaction, haloform reaction – Reaction with LiAlH₄ and NaBH₄ – Clemmensen reduction, Wolff Kishner reduction, MPV reduction – reducing properties of Carbonyl compounds.

Unit - IV

Malonic ester, acetoacetic ester and cyanoacetic ester-their preparation and synthetic applications Tautomerism of acetoacetic ester. Geometrical isomerism – Cis& Trans, E & Z notations – Geometrical isomerism in maleic acid and fumaric acid - physical and chemical properties of geometrical isomers.

Unit-V

Bioinorganic chemistry- Importance of metals in biological system-Fe,Zn,Co. Stucture and functions of Hemoglobin, Chlorophyll and cytochrome c- Electronic pathway of photosystem-I and II

Text Book reference

1.INORGANIC CHEMISTRY by J D LEE 2. Bioinorganic Chemistry by Asim K.Das

CORE V – CHEMISTRY PAPER IV

Teaching hours: 45 hours per semester (3 hours per week)

Subject description This paper presents the basic aspects of thermodynamics, adsorption, chromatography and computer programming.

Goals To enable the students to understand the laws of thermodynamics, adsorption and the Computer C Programming.

Objectives To study the applications of computer programming in chemistry and the importance of send and thermodynamics, adsorption and chromatography.

UNIT I:

Introduction to second law of thermodynamics – Carnot cycle – entropy – Definition – Entropy changes in isothermal transformation –Trouton's rule. Entropy as function of T and V – Entropy as a function of T and P – Changes of entropy with T, Entropy changes in ideal gas – entropy of mixing of ideal gases.

UNIT II

General conditions of equilibrium and spontaneity- conditions of equilibrium and spontaneity under constants – definition of A and G – physical significance of – dA and dG.Temperature and pressure dependence of G – Gibbs – Helmholtz equation. Chemical equilibrium – The concept of chemical potential – chemical potential in a mixture of ideal gases – van't Hoff Isotherm and isochore – Third law of thermodynamics – statement and applications. Exception to third law.

UNIT III

ADSORPTION AND CATALYSIS Adsorption – types, differences between chemisorption and physisorption – Adsorption of Gases by solids – Adsorption isotherms – Freundlich, Langmuir isotherms derivations – BET EQUATION (Derivation not required) – Adsorption from solutions – ion exchange adsorption Types and applications – Techniques to determine the adsorped molecules on solid surfaces. Catalysis – classification – differences between Homogeneous and Heterogeneous catalysis – Acid Base catalysis – Kinetics and Mechanisms – Autocatalysis – Enzyme catalysis Characteristics and mechanism - Michaelis – Menton equation.

UNIT IV

CHROMATOGRAPHY Chromatographic methods – Partition Adsorption – Basic principles – Differential migration, adsorption phenomenon, nature of adsorbents, choise of solvents and Rf value – Techniques and applications of Paper, Column and TLC – Gas chromatography and HPLC (Basic principles only).

UNIT V :

C program for chemistry Structure of C program, Variables in C, C Keywords and constants in C. Operators in C – Arithmatic, Increment, Decrement, relational and logical operators.

Program: To calculate the pH of solutions– Calculation of pH of solution using Henderson equationto compute the rate constant of a first order reaction – to compute the energy of activation of a reaction-Program to convert F^{0} degree C⁰-PROGRAM TO CALCULATE MOLECULAR WEIGHT OF COMPOUNDS (C₆H₆, C₂H₅OH).

REFERENCES:

1 .Principles of physical chemistry, B.P.Puri, L.R.Sharma and M.S.Phathania, ShobanlalNagin Chand & Co.

2. Physical chemistry G,W.Castelan, Narosa publishers.

3. Physical chemistry(volll) – N.B.Singh, ShivasaranDas,A.K.Singh –New Age International Publishers – First edition(2009)

4. Introduction to Chromatography – V.K.Srivatsava and K.K.Srivatsava – S.Chand& Company – Second edition(1981)

5. Computer for chemists – By PundirBansal – PragatiPrakasam Pubs

CORE VI - CHEMISTRY PAPER V

Teaching hours : 60 Hours per semester (4 hours per week)

Subject description This paper presents the chemistry of few metals, phenols, amines and phase rule.

Goals To enable the students to learn about the reactions of phenol and amines .

Objectives To study the reaction of phenol and amines and applications of phase rule.

Contents

UNIT I :

Occurrence, extraction, properties and uses of Zirconium, Vanadium, Molybdenum and Tungsten - their important compounds V2O5, ZrOCl2, ammonium molybdate, molybdenum blue, WO2, and tungsten bronzes.

UNIT II: Monohydric phenols - preparation & properties –Reaction of monohydric phenols with mechanism – alkylation, esterification, nitration, sulphonation, halogenation coupling with diazonium salts – Kolbe, Reimer – Tiemann, Schotten – Bauman and Gattermann reactions.

UNIT III :Amines- Preparation and properties of aliphatic and aromatic primary, secondary and tertiary amines – their separation, comparison of their basicity – ring substitution, diazotization and coupling reaction of aromatic amines. Diazomethane and diazoacetic ester – preparation, structure and their synthetic applications.

UNIT IV :Phase rule and phase equilibria –the equilibrium condition. Stability of phase of a pure substance. Pressure dependene of μ and T curves. The Clapeyron and Clapeyron-Clausius equations. Derivation of Gibbs phase rule. Phase equilibria in one component system.Reduced phase rule Phase diagram for water, carbondioxide system, phase diagram for two component system – construction of the phase diagram/Thermal analysis method Bi-Cd,Zn-Mg and Extraction of Agsystem.

UNIT V: Solutions: ideal and non ideal – Raoult's law, Henry's law – Nernst distribution law and its applications. Colligative properties- relative lowering of vapour pressure, elevation of boiling point, depression of freezing point and osmotic pressure- their applications.

CORE VIII - CHEMISTRY PAPER VI

Teaching hour : 60 hours per semester (4 hours per week)

Subject description This paper presents the principle of radio activity, acids , bases and solvents. **Goals** To enable the students to know about the radio activity, acid and bases, the role of solvent in chemical reactions.

Objectives To understand the principles of radio activity.

Contents

UNIT I :

Structure of metals and alloys-substitutional and interstitial solid solution-Hume Rothery ratiosmetallic bonding-electrical, optical and mechanical properties of metals-semiconductors, intrinsic and extrinsic-their uses.Super conductors-An elementary treatment.

UNIT II :

Artificial radio activity.Artificial transmutation of elements, synthesis of radio isotopes and. nuclear fission and fusion.Nuclear reactors – principle of working – production of electrical energy – atomic projects in India – Safety measures; disposal of reactor wastes – pollution.Nuclear reactions, mechanisms and different types of stellar energy.

UNIT III :

Nature of isotopes and isobars – detection and isolation of isotopes – various methods – importance of discovery of istopes – uses of isotopes in various fields. Nuclear stability n/p ratio, magic numbers, C-12 atomic weight scale, C-14 dating, mass defect and nuclear binding energies. Radio activedisintergration series.

UNIT IV : COORDINATION CHEMISTRY -I

Types of ligands , IUPAC Nomenclature, Isomerism - Ionisation,hydrate, linkage, ligand and coordination isomerism. Stereoisomerism-geometrical and optical isomerism in 4 & 6 coordinated complexes. Theories of coordination compounds – Werner's and Sidgwick's EAN concept , Valence Bond theory – hybridisation, geometry and magnetic properties of [Ni(CN)4]2-, [NiCl4]2-, [Fe(CN)6]^{4-,} [Co(NH3)6]³⁺ and [CoF6]^{3-,} Crystal field theory – spectrochemical series , splitting of 'd' metal orbitals inoctahedral and tetrahedral complexes, low spin & high spincomplexes. Explanation of colour and magnetic properties using CFT, comparison of VBT and CFT.

The solvents- solubility of compounds – effect of temperature on solubility- Role of water as solvent- chemical structure and solubility. Classifications of solvents-general behaviour- properties of ionizing solvents. Types of reactions in non aqueous solvents-protonic solvents - ammonia, hydrogen fluoride. Non Protonic solvents-SO₂ and BrF₃. Organic solvents - C₂H₅OH and Ether.

Text book

1.Malik,Wahid U., G.D. Tuli and R.D .Madan . Selected Topics in Inorganic Chemistry,7th ed., New Delhi S.Chand& Company Ltd., 2007.

CORE IX - CHEMISTRY PAPER VII

Teaching hour : 60 hours per square (4 hours per week)

Subject description This paper presents the chemistry of carbohydrate, molecular rearrangements, amino acids and hetero cyclic compound.

Goals To enable the students to learn about carbohydrates, amino acids and hetero cyclic compounds.

Objectives To understand the importance of carbohydrate, amino acids in chemistry.

Contents

UNIT I :

Optical activity of compounds with asymmetric carbon- racemisation – resolution – asymmetric synthesis- configuration D,L and R,S. nomenclature. Optical activity due to restricted rotation (biphenyls, allenes and spiranes) and molecular over crowding.

UNIT II :

Mechanism of molecular rearrangement reactions: PinacolPinacolone, Beckmann, Hoffmann, Curtius, Benzilic acid, Schmidt, Lossen, Cope and Claisen rearrangements.

UNIT III :Carbohydrates: Chemistry and structure of Glucose, Fructose, Sucrose and Maltose (cyclic structure as well). Starch and Cellulose - an elementary account. (Elucidation of structure not necessary) Inter conversion of sugars-mutarotation – Epimerisation.

UNIT IV :Aminoacids and proteins Amino acids-Classification –Preparation and properties of peptides and poly peptides-proteins classification based on physical properties and biological functions-primary, secondary and tertiary structure – properties and uses.

UNIT V :Heterocyclic compounds Chemistry of Furan, Pyrrole, Thiophene, Pyridine, Quinoline, Isoquinoline, IndoleIsatin and Indigo.

CORE X - CHEMISTRY PAPER VIII

Teaching hour : 60 hours per semester (4 hours per week)

Subject description This paper presents the principles of conduction Electro motive force, fuel cells.

Goals To enable the students to know about electro chemistry.

Objectives To study EMF, pH and their applications. **Contents**

UNIT I:

Electrical conduction, conduction in metals and in electrolytic solutions. Measurement of conductivity in electrolytic solutions. Migration of ions-Kohlrausch's law. Arrhenius theory of electrolytic dissociation-Ostwald's dilution law. Theory of strong electrolytes-Debye-Huckel-Onsagar theory (elementary account only) verification. Debye-Falkenhagen effect-Wien effect-Transport numbers-**Definition and Determinations**. Conductometric titrations.

UNIT II:

Ionic Equilibria -Solubility and solubility product-determination of solubility product- Applications of solubility product principle. Dissociation of weak acids and bases-Dissociation constants-pH scale-common ion effect-buffer solutions- Determination of pH values of buffer mixtures-Henderson's equation-Hydrolysis of salts-Degree of hydrolysis.

UNIT III:

Electrode potentials-The standard hydrogen electrode kinds of electrodes and their potentials-Nernst equation.Single electrode potential-Determination and significance of electrode potentialselectro chemical series- temperature dependence of the cell EMF.Electrochemical cells-Secondary refrenceelectrode-western-cadmium cell.EMF-computation and measurement of cell EMF.Thermodynamic quantities of cell reactions.

UNIT IV:

Reference electrodes-Electrodes for measurement of pH-concentration cells with and without transport-liquid junction potential-applications of EMF measurements.Redox potential-Redox indicators-uses.Potentiometric titrations.

UNIT V:

Fuel cells: Hydrogen- oxygen cell and hydrocarbon - oxygen cell. Storage cells. Lead storage cell and Nickel cadmium cell. Decomposition voltage-over voltage-Deposition and discharge potential.

TEXTILE CHEMISTRY PAPER – IV TEXTILE CHEMISTRY – PRACTICAL

Lab- hours : 30 Hours per semester (2 hours per week) LIST OF EXPERIMENTS

- 1. Estimation of pH- paper, digital pH meter, pH solution
- 2. Volumetric analysis of Sodium Nitrite
- 3. Estimation of available chlorine in bleaching powder
- 4. Analysis of alkalinity of water by volumetry

PREPARATION OF DYES

- 1. Methyl Red
- 2. Malachite Green
- 3. Methyl Orange
- 4. Pare nitro benzene azo beta naphthol

Dyeing of textile Materials

- 1. Dyeing of cotton with direct dye
- 2. Dyeing of silk with acid dye
- 3. Variation of colour with temperature on direct dyeing
- 4.Sreen printing on cotton fibre.