B. Sc. MATHEMATICS DEGREE COURSE - CBCS PATTERN
(For the students admitted from the academic year 2010-2011 and onwards)

Scheme of Examination

<table>
<thead>
<tr>
<th>Part</th>
<th>Study Components</th>
<th>Course title</th>
<th>Ins. hrs/week</th>
<th>Examinations</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dur.hrs CIA Marks Total Marks</td>
<td></td>
</tr>
<tr>
<td>Semester I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Language – I</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>English – I</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper I - Classical Algebra</td>
<td></td>
<td>4</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper II-Calculus</td>
<td></td>
<td>5</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Allied A : Paper I Chosen by the college</td>
<td></td>
<td>7</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>Environmental Studies #</td>
<td></td>
<td>2</td>
<td>3 - 50 50 2</td>
<td></td>
</tr>
<tr>
<td>Semester II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Language – II</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>English – II</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper III Analytical Geometry</td>
<td></td>
<td>4</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper IV- Trigonometry, Vector Calculus and Fourier Series</td>
<td></td>
<td>5</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Allied A: Paper II Chosen by the college</td>
<td></td>
<td>7</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>Value Education – Human Rights #</td>
<td></td>
<td>2</td>
<td>3 - 50 50 2</td>
<td></td>
</tr>
<tr>
<td>Semester III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Language – III</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>English – III</td>
<td></td>
<td>6</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper V- Differential Equations and Laplace Transforms</td>
<td></td>
<td>3</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper VI- Statics</td>
<td></td>
<td>3</td>
<td>3 25 75 100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Allied B - Paper III Chosen by the college</td>
<td></td>
<td>7</td>
<td>3 20 55 75 3</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Skill based Subject - Operations Research -I</td>
<td></td>
<td>3</td>
<td>3 20 55 75 3</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Tamil @ / Advanced Tamil# (OR) Non-major elective - I (Yoga for Human Excellence)# / Women’s Rights#</td>
<td></td>
<td>2</td>
<td>3 50 50 2</td>
<td></td>
</tr>
</tbody>
</table>
Semester IV

<table>
<thead>
<tr>
<th>I</th>
<th>Language – IV</th>
<th>6</th>
<th>3</th>
<th>25</th>
<th>75</th>
<th>100</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>English – IV</td>
<td>6</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper VII-Dynamics</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Paper VIII- Programming in C</td>
<td>3</td>
<td>3</td>
<td>**</td>
<td>**</td>
<td>100**</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Allied B : Paper II – Chosen by the college</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>55</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>Practical - (Allied)</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>Skill based Subject - Operations Research – Paper II</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>55</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>Tamil @ /Advanced Tamil # (OR) Non-major elective -II (General Awareness #)</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Semester V

III	Core Paper IX-Real Analysis-I	5	3	25	75	100	4
III	Core Paper X- Complex Analysis-I	6	3	25	75	100	4
III	Core Paper XI- Modern Algebra-I	6	3	25	75	100	4
III	Core Paper XII- Discrete Maths	5	3	25	75	100	4
III	Elective I	5	3	20	55	75	3
IV	Skill based Subject - Operations Research Paper III	3	3	20	55	75	3

Semester VI

III	Core Paper XIII Real Analysis-II	5	3	25	75	100	4
III	Core Paper XIV Complex Analysis-II	6	3	25	75	100	4
III	Core Paper XV Modern Algebra-II	6	3	25	75	100	4
III	Elective II	5	3	20	55	75	3
III	Elective III	5	3	25	75	100**	4
IV	Skill Based Subject - Operations Research - Project	-	-	-	-	75*	3
V	Extension Activities @	-	50	-	50	2	

** Total: 3500 140 **

All Computer papers have theory and practical exams.

* Project report - 80 marks; Viva-voce – 20 marks
@ No University Examinations. Only Continuous Internal Assessment (CIA)
No Continuous Internal Assessment (CIA). Only University Examinations.

<table>
<thead>
<tr>
<th>Elective – I</th>
<th>A</th>
<th>Astronomy-I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Numerical Methods-I</td>
</tr>
<tr>
<td>Elective – II</td>
<td>A</td>
<td>Astronomy- II</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Numerical Methods-II</td>
</tr>
<tr>
<td>Elective - III</td>
<td>A</td>
<td>Graph Theory</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Automata Theory & Formal Languages</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Programming in C++ **</td>
</tr>
</tbody>
</table>
Semester: I - Core Paper - I

Subject title: Classical Algebra
Credit hours: 4

Subject description: This course focuses on the convergence and divergence of different types of series, also discusses the standard methods of solving both polynomial and transcendental type equations.

Goal: To enable the students to learn about the convergence and divergence of the series and to find the roots for the different types of the equation.

Objectives: On successful completion of this course the students should gain knowledge about the convergence of series and solving equations.

UNIT I:
Binomial, exponential theorems-their statements and proofs- their immediate application to summation and approximation only.

UNIT II:
Logarithmic series theorem-statement and proof-immediate application to summation and approximation only. Convergency and divergency of series –definitions, elementary results-comparison tests-De Alemberts and Cauchy’s tests.

UNIT III:
Absolute convergence-series of positive terms-Cauchy’s condensation test-Raabe’s test.

UNIT: IV
Theory of equations: Roots of an equation- Relations connecting the roots and coefficients- transformations of equations-character and position of roots-Descarte’s rule of signs-symmetric function of roots-Reciprocal equations.

UNIT V:
Multiple roots-Rolle’s theorem - position of real roots of \(f(x) = 0 \) - Newton’s method of approximation to a root - Horner’s method.

Treatment as in
S. Viswanatham (Printers & Publishers Private Ltd-2006)

Reference:
Core Paper- II

Subject title: CALCULUS

Credit hours-5

Subject description:
This course presents the idea of curvatures, integration of different types of functions, its geometrical applications, double, triple integrals and improper integrals.

Goal:
To enable the students to learn and gain knowledge about curvatures, integrations and its geometrical applications.

Objectives:
On successful completion of course the students should have gain about the evolutes and envelopes, different types of integrations, its geometrical application, proper and improper integration.

UNIT I:
Curvature-radius of curvature in Cartesian and polar forms-evolutes and envelopes- pedal equations- total differentiation- Euler’s theorem on homogeneous functions.

UNIT II:
Integration of $f'(x)/f(x)$, $\sqrt{px+q}$, $\sqrt{ax^2+bx+c}$, $\sqrt{(x-a)/(b-x)}$, $\sqrt{(x-a)(b-x)}$, $1/\sqrt{(x-a)(b-x)}$, $1/(acosx+bsinx+c)$, $1/(acos^2x+bsin^2x+c)$, Integration by parts

UNIT III:
Reduction formulae- problems- evaluation of double and triple integrals- applications to calculations of areas and volumes-areas in polar coordinates.

UNIT IV:
Change of order of integration in double integral- Jacobions.- change of variables in double and triple integrals.

UNIT V:
Notion of improper integrals, their convergence, simple tests for convergence simple problems, Beta and Gamma integrals-their properties, relation between them- evaluation of multiple integrals using Beta and Gamma functions.

Treatment as in

Reference:
Semester: II - Core Paper- III

Subject title: Analytical Geometry
Credit hours-4

Subject Description:
This course gives emphasis to enhance student knowledge in two dimensional and three dimensional analytical geometry. Particularly about two dimensional conic sections in polar coordinates and the geometrical aspects of three dimensional figs, viz, sphere, cone and cylinder.

Goal:
To enable the students to learn and visualize the fundamental ideas about co-ordinate geometry.

Objectives:
On successful completion of the course students should have gained knowledge above the regular geometrical figures and their properties.

UNIT I:
Analytical geometry of 2D-polar coordinates equation of a conic -directrix-chord-tangent-normal- simple problems - only in deriving equation of a conic.

UNIT II:
Analytical Geometry 3D-stright.lines-coplanarity of straight-line-shortest distance (S.D) and equation of S.D between two lines-simple problems.

UNIT III:
Sphere: standard equation of sphere-results based on the properties of a sphere-tangent plane to a sphere- equation of a circle.

UNIT IV:
Cone and cylinder: Cone whose vertex is at the origin- envelope cone of a sphere-right circular cone-equation of a cylinder-right circular cylinder.

UNIT V:
Conicoides: Nature of a conicoide- standard equation of central conicoid –enveloping cone-tangent plane-condition for tangency –director Sphere- director plane

Treatment as in
1. Analytical Geometry by P. Durai Pandian & others
2. Solid Geometry by N.P. Bali- Laxmi Publications (P) Ltd

Reference:
1. Analytical Geometry of 2D by T.K. M. Pillai and Others – Visvanathan Publications- 2006
2. Solid Geometry by M.L. Khanna- Jainath & Co Publishers, Meerut
Semester II - Core Paper – IV
Subject Title: Trigonometry, Vector Calculus and Fourier Series
Credit Hours: 5

Subject Description : This course presents the circular functions, hyperbolic functions, differentiation of functions in scalar and vector field.

Goals: To enable the students to learn about the expansion of trigonometrical functions and to gain knowledge about vector treatment which will help them to deal the analytical geometry problems using vector method.

Objectives: On successful completion of this course the students should have gained knowledge about expansion of trigonometric functions, line integral, surface integral, volume integral and Fourier series.

Unit I:
Expansion in Series – Expansion of $\cos^n \theta$, $\sin^n \theta$, in a series of cosines and sines of multiples of θ – Expansions of $\cos n\theta$ and $\sin n\theta$ in powers of sines and cosines – Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ – hyperbolic functions and inverse hyperbolic functions.

Unit II:
Logarithm of complex quantities - summation of series – when angles are in arithmetic progression – C + iS method of summation – method of differences.

Unit III:
Scalar and vector fields –Differentiation of vectors – Gradient, Divergence and Curl.

Unit IV:
Integration of vectors – line integral – surface integral – Green’s theorem in the plane – Gauss divergence theorem – Strokes theorem – (Statements only) - verification of the above said theorems.

Unit V:
Periodic functions – Fourier series of periodicity 2π – half range series.

Treatment as in

References:
Semester: III - Core paper V

Subject Title: Differential Equations and Laplace Transforms Credit Hours: 3

Subject Descriptions:
This course presents the method of solving ordinary differential Equations of First Order and Second Order, Partial Differential equations. Also it deals with Laplace Transforms, its inverse and Application of Laplace Transform in solving First and Second Order Differential Equations with constant coefficients.

Goals: It enables the students to learn the method of solving Differential Equations.

Objectives: End of this course, the students should gain the knowledge about the method of solving Differential Equations. It also exposes Differential Equation as a powerful tool in solving problems in Physical and Social sciences.

Unit I:
Ordinary Differential Equations: Equations of First Order and of Degree Higher than one – Solvable for p, x, y – Clairaut’s Equation – Simultaneous Differential Equations with constant coefficients of the form
i) \(f_1(D)x + g_1(D)y = \phi_1(t) \)
ii) \(f_2(D)x + g_2(D)y = \phi_2(t) \)

where \(f_1, g_1, f_2 \) and \(g_2 \) are rational functions \(D = \frac{d}{dt} \) with constant coefficients \(\phi_1 \) and \(\phi_2 \) explicit functions of \(t \).

Unit II:
Finding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form \(Ve^{ax} \) where \(V \) is a function of \(x \) – Euler’s Homogeneous Linear Differential Equations – Method of variation of parameters.

Unit III:

Unit IV:
Laplace Transforms: Definition – Laplace Transforms of standard functions – Linearity property – Firsting Shifting Theorem – Transform of \(tf(t), \frac{f(t)}{t}, f(t), f^{(1)}(t) \).

Unit V:
Inverse Laplace Transforms – Applications to solutions of First Order and Second Order Differential Equations with constant coefficients.

Treatment as in

References:
2) N.P. Bali, Differential Equations, Laxmi Publication Ltd, New Delhi, 2004
Semester: III - Core Paper – VI

Subject title: Statics

Subject Description:
This course contains the nature of forces acting on a surface, friction and center of gravity.

Goal:
To enable the students to realize the nature of forces and resultant forces when more than one force acting on a particle.

Objectives:
On successful completion of course the students should realize the concept about the forces, resultant force of more than one force acting on a surface, friction and center of gravity. Also he can differentiate static and dynamic forces.

UNIT-I
Forces acting at a point – Parallelogram law-triangle law -

UNIT- II
(λ,µ) theorem - Polygon of forces-conditions of equilibrium.

UNIT – III
Parllel Forces-Moments and couples composition of parallel forces (like and unlike)-

UNIT – IV
Moment of a force about a point-Varignons theorem - Co-planar forces acting on a rigid body – Theorem on three co-planar forces in equilibrium

UNIT – V
Reduction of a system of co-planar forces to a single force and a couple - necessary & sufficient conditions of equilibrium only – Equation to the line of action of the resultant.

Treatment as in

References
Semester III - Skill Based Subject - Operations Research – Paper I
Credit hours: 3

Subject description:
This course contains advantages, limitations and applications of O.R, formulation of Linear Programming Problems (L.P.P), methods to solve L.P.P like simplex method, Charnes Penality Method and Two Phase Simplex method. Also it deals about duality in L.P.P, Transportation and Assignment Problems with applications

Goal:
It enables the students to use the mathematical knowledge in optimal use of resources.

Objectives:
On successful completion of this course students should have gained knowledge about optimal use of resources.

Unit I:

Unit II:
Simplex Method – Charnes Penality Method (or) Big – M Method - Two Phase Simplex method – Problems.

Unit III:
Duality in L.P.P – Concept of duality – Duality and Simplex Method – Problems

Unit IV:
The transportation Problems – Basic feasible solution by L.C.M – NWC- VAM-optimum solutions – unbalanced Transportation problems

Unit V:

References:
SEMESTER IV - Core Paper – VII

Subject title: Dynamics
Credit hours: 3

Subject Description: This course provides the knowledge about the field Kinematics, projectile, simple harmonic motion and impact of a particle on a surface.

Goal: To enable the students to apply Laws, Principles, Postulates governing the Dynamics in physical reality.

Objectives: End of this course, the student understand the reason for dynamic changes in the body.

UNIT – I
Projectiles: Path of a projectile-Greatest height-time of flight-range on an inclined plane through the point of projection-Maximum range.

UNIT – II

UNIT – III
Simple Harmonic Motion: Amplitude, periodic time, phase-composition of two simple harmonic motions of the same period in a straight line and in two perpendicular lines.

UNIT – IV
Impact on a fixed surface: Impulsive force-Impact on a smooth fixed plane –Direct and oblique impact of two smooth spheres

UNIT – V
Loss of Kinetic energy during direct and oblique impacts.

Treatment as in

References
SEMESTER IV : –CORE PAPER VIII (Theory & Practical)

Subject Title: Programming in C No.of.Hours: 3

Subject Description: This paper presents the importance of c language, its structure, Data types, Operators of C, Various control statements, Arrays, different types of functions and practical problems.

Goals: To enable the students to learn about the basic structure, Statements, arrays, functions and various concepts of C language.

Objectives: On successful completion of the course the students should have:
Learnt the basic structure, operators and statements of c language.
Learnt the decision making statements and to solve the problems based on it.
Learnt arrays,functions and solve the problems Regarding about it.

UNIT IV: The WHILE statement - the DO statement the FOR statement – Jumps in loops.

UNIT V: One, Two dimensional arrays – Initiating two dimensional arrays – Multidimensional arrays –Declaring and initializing string variables –reading strings from terminal – Writing strings on the screen – Arithmetic operations on characters.

TEXT BOOK:

REFERENCE BOOKS:
C-PROGRAMMING PRACTICAL LIST.

1. Write a C program to generate ‘N’ Fibonacci number.
2. Write a C program to print all possible roots for a given quadratic equation.
3. Write a C program to calculate the statistical values of mean, median, mode, Standard Deviation and variance of the given data.
4. Write a C program to sort a set of numbers.
5. Write a C program to sort the given set of names.
6. Write a C program to find factorial value of a given number ‘N’ using recursive function call.
7. Write a C program to find the product of two given matrix.
8. Write a C program to prepare pay list for a given data.

Semester IV - Skill Based Subject

Subject title - Operations Research – Paper II Credit hours: 3

Subject Description:
This course gives emphasis to enhance student knowledge in game theory, performance measures of queues, optimal use of Inventory and Network scheduling with application.

Unit I:
Game Theory – Two person zero sum game – The Maxmini – Minimax principle – problems - Solution of 2 x 2 rectangular Games – Domination Property – (2 x n) and (m x 2) graphical method – Problems.

Unit II:
Queueing Theory – Introduction – Queueing system – Characteristics of Queueing system – symbols and Notation – Classifications of queues – Problems in (M/M/1) : (∞/FIFO); (M/M/1) : (N/FIFO); (M/M/C) : (∞/FIFO); (M/M/C) : (N/FIFO) Models.

Unit III:
Inventory control – Types of inventories – Inventory costs – EOQ Problem with no shortages – Production problem with no shortages – EOQ with shortages – Production problem with shortages – EOQ with price breaks.

Unit IV:
Unit V:
PERT – PERT calculations – Cost Analysis – Crashing the Network – Problems.

References:

SEMESTER V - Core Paper – IX

Subject title: Real Analysis - I Credit hours: 5

Subject Description: This course focuses on the Real and Complex number systems, set theory, point set topology and metric spaces.

Goal: To introduce the concepts which provide a strong base to understand and analysis mathematics.

Objective: On successful completion of this course the students should gain the knowledge about real and complex numbers, sets and metric space.

UNIT I
The Real and Complex number systems the field axioms, the order axioms –integers –the unique Factorization theorem for integers –Rational numbers –Irrational numbers –Upper bounds, maximum Elements, least upper bound –the completeness axiom –some properties of the supremum –properties of the integers deduced from the completeness axiom – The Archimedian property of the real number system –Rational numbers with finite decimal representation of real numbers –absolute values and the triangle inequality –the Cauchy-Schewarz, inequality –plus and minus infinity and the extended real number system.

UNIT II

UNIT III
Elements of point set topology: Euclidean space R^n –open balls and open sets in R^n. The structure of open Sets in R^n –closed sets and adherent points –The Bolzano –Weierstrass theorem –the Cantor intersection Theorem.
UNIT IV

UNIT V

Treatment as in
<table>
<thead>
<tr>
<th>Unit</th>
<th>Chapter</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit I</td>
<td>1</td>
<td>1.2, 1.3, 1.6 to 1.16, 1.18 to 1.20</td>
</tr>
<tr>
<td>Unit II</td>
<td>2</td>
<td>2.2 to 2.15</td>
</tr>
<tr>
<td>Unit III</td>
<td>3</td>
<td>3.2 to 3.9</td>
</tr>
<tr>
<td>Unit IV</td>
<td>3</td>
<td>3.10 to 3.16</td>
</tr>
<tr>
<td>Unit V</td>
<td>4</td>
<td>4.2 to 4.5, 4.8 to 4.15</td>
</tr>
</tbody>
</table>

References

SEMESTER V - Core Paper – X

Subject title: Complex Analysis - I Credit hours: 6

Subject Description: This course provides the knowledge about complex number system and complex functions.

Goal: To enable the students to learn complex number system, complex function and complex integration.

Objectives: On successful completion of this course the students should gained knowledge about the origin, properties and application of complex numbers and complex functions.

UNIT I
Complex number system, Complex number –Field of Complex numbers – Conjugation – Absolute value -Argument –Simple Mappings.

i) $w = z + \alpha$ ii) $w = az$ iii) $w = 1/z$

invariance of cross-ratio under bilinear transformation –Definition of extended complex plane – Stereographic projection.
UNIT II

Complex functions: Limit of a function --continuity --differentiability -- Analytical function defined in a region --necessary conditions for differentiability --sufficient conditions for differentiability --Cauchy-Riemann equation in polar coordinates --Definition of entire function.

UNIT III

Power Series: Absolute convergence --circle of convergence --Analyticity of the sum of power series in the Circle of convergence (term--term differentiation of a series) Elementary functions: Exponential, Logarithmic, Trigonometric and Hyperbolic functions.

UNIT IV

Conjugate Harmonic functions: Definition and determination, Conformal Mapping: Isogonal mapping --Conformal mapping-Mapping $z \rightarrow f(z)$, where f is analytic, particularly the mappings.

$$ w = e^z; \ w = z^{1/2}; \ w = \sin z; \ w = 1/2(z + 1/z) $$

UNIT V

Complex Integration: Simply and multiply connected regions in the complex plane. Integration of $f(z)$ from definition along a curve joining z_1 and z_2. Proof of Cauchy’s Theorem (using Goursat’s lemma for a simply connected region). Cauchy’s integral formula for higher derivatives (statement only)-Morera’s theorem.

Treatment as in

Unit I Chapter 1 Sections 1.1 to 1.3, 1.6 to 1.9
Chapter 2 Sections 2.1 to 2.2, 2.6 to 2.9,
Chapter 7 Section 7.1
Unit II Chapter 4 Sections 4.1 to 4.10
Unit III Chapter 6 Sections 6.1 to 6.11
Unit IV Chapter 6 Sections 6.12 to 6.13
Chapter 7 Sections 7.6 to 7.9
Unit V Chapter 8 Sections 8.1 to 8.9

References

SEMESTER V - Core Paper – XI

Subject title: Modern Algebra - I Credit hours: 6

Subject description: This course provides knowledge about sets, mappings, different types of groups and rings.
Goals: To enable the students to understand the concepts of sets, groups and rings. Also the mappings on sets, groups and rings.

Objective: On successful completion of course the students should have concrete knowledge about the abstract thinking like sets, groups and rings by proving theorems.

UNIT I
Sets – mappings – Relations and binary operations – Groups: Abelian group, Symmetric group Definitions and Examples – Basic properties.

UNIT II

UNIT III
Homomorphisms – Cauchy’s theorem for Abelian groups – Sylow’s theorem for Abelian groups Automorphisms – Inner automorphism - Cayley’s theorem, permutation groups.

UNIT IV
Rings: Definition and Examples –Some Special Classes of Rings – Commutative ring – Field – Integral domain - Homomorphisms of Rings.

UNIT V
Ideals and Quotient Rings – More Ideals and Quotient Rings – Maximal ideal - The field of Quotients of an Integral Domain

Treatment as in

Unit I Chapter 1 Sections 1.1 to 1.3,
Chapter 2 Sections 2.1 to 2.3
Unit II Chapter 2 Sections 2.4 to 2.6
Unit III Chapter 2 Sections 2.7 to 2.10
Unit IV Chapter 3 Sections 3.1 to 3.3
Unit V Chapter 3 Sections 3.4 to 3.6.

References
SEMESTER – V - CORE PAPER XII

Subject Title: DISCRETE MATHEMATICS

Subject Description: This course focuses on the mathematical logic, Relations& Functions, Formal languages and Automata, Lattices and Boolean Algebra and Graph Theories.

Goal: To enable the students to learn about the interesting branches of Mathematics.

Objectives: On successful completion of this course should gain knowledge about the Formal languages Automata Theory, Lattices & Boolean Algebra and Graph Theory.

UNIT-I:

UNIT-II:
Relations and functions: Composition of relations, Composition of functions, Inverse functions, one-to-one, onto, one-to-one& onto, onto functions, Hashing functions, Permutation function, Growth of functions. Algebra structures: Semi groups, Free semi groups, Monoids, Groups, Cosets, Sets, Normal subgroups, Homomorphism. (2-3.5, 2-3.7, 2-4.2, 2-4.3, 2-4.6, 3-2, 3-5, 3-5.3, 3-5.4)

UNIT-III:
Formal languages and Automata: Regular expressions, Types of grammar, Regular grammar and finite state automata, Context free and sensitive grammars. (3-3.1, 3-3.2, 4-6.2)

UNIT-IV:
Lattices and Boolean algebra: Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimisation of Boolean functions. (4-1.1, 4-2, 4-3, 4-4.2)

UNIT-V:
Graph Theories: Directed and undirected graphs, Paths, Reachability, Connectedness, Matric representation, Eular paths, Hamiltonian paths, Trees, Binary trees simple theorems, and applications. (5-1.1, 5-1.2, 5-1.3, 5-1.4)

Text Books:
Semester V - Skill Based Subject

Subject title: Operations Research – Paper III - Credit hours: 3

Subject Description:
This course presents applications and method to solve Integer Programming Problems, Non-linear Programming Problems and Dynamic Programming problems. It also includes Markov Analysis and Decision Analysis.

Unit I:
Integer Programming Problem – Gromory’s fractional cut Method – Branch Bound Method.

Unit II:

Unit III:

Unit IV:
Markov Analysis – Stochastic process – Markov analysis Algorithm.

Unit V:

References:

SEMESTER VI - Core Paper – XIII

Subject Title: REAL ANALYSIS - II Credit hours: 5

Subject Description: This course presents nature of functions and mappings like continuity, connectivity, and derivative. It also includes the concept of monotonic functions with properties and Riemann - Stieltjes integral.

Goal: To introduce the concepts which provide a strong base to understand and analysis mathematics.

Objective: On successful completion of this course the students should gain the knowledge about the nature of functions mappings.
UNIT I
Examples of continuous functions –continuity and inverse images of open or closed sets – functions continuous on compact sets –Topological mappings –Bolzano’s theorem.

UNIT II
Connectedness –components of a metric space – Uniform continuity : Uniform continuity and compact sets –fixed point theorem for contractions –monotonic functions.

UNIT III

UNIT IV
Properties of monotonic functions –functions of bounded variation –total Variation –additive properties of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of increasing functions –continuous functions of bounded variation.

UNIT V

Treatment as in

Unit I Chapter 4 Sections 4.11 to 4.15
Unit II Chapter 4 Sections 4.16, 4.17, 4.19, 4.20, 4.21, 4.23
Unit III Chapter 5 Sections 5.2 to 5.10 and 5.12
Unit IV Chapter 6 Sections 6.2 to 6.8
Unit V Chapter 7 Sections 7.1 to 7.7

References
SEMESTER VI - Core Paper – XIV

Subject title: COMPLEX ANALYSIS - II

Credit hours: 6

Subject Description: This course provides the knowledge about complex functions with some fundamental theorems. Singularity and residues in complex functions, integrations of complex functions and meromorphic functions.

Goal: To enable the students to learn complex number system, complex function and complex integration.

Objectives: On successful completion of this course the students should gained knowledge about the complex functions and its nature.

UNIT I
Results based on Cauchy’s theorem(I) : Zeros-Cauchy’s Inequality – Lioville’s theorem – Fundamental theorem of algebra –Maximum modulus theorem –Gauss mean value theorem – Gauss mean value theorem for a harmonic function on a circle.

UNIT II
Results based on Cauchy’s theorem (II) –Taylor’s series –Laurent’s series.

UNIT III

UNIT IV
Real definite integrals: Evaluation using the calculus of residues – Integration on the unit circle –Integral with -∞ and +∞ as lower and upper limits with the following integrals:

i) P(x)/Q(x) where the degree of Q(x) exceeds that of P(x) at least 2.

ii) (sin ax).f(x), (cos ax).f(x), where a>0 and f(z) → 0 as z→∞ and f(z) does not have a pole on the real axis.

iii) f(x) where f(z) has a finite number of poles on the real axis.

Integral of the type \(\int \frac{a^{-1}x}{(1+x)} \, dx; 0< a <1; \)

UNIT V
Meromorphic functions: Theorem on number of zeros minus number of poles –Principle of argument: Rouche’s theorem – Theorem that a function which is meromorphic in the extended plane is a rational function.

Treatment as in

Unit I Chapter 8 Sections 8.10, 8.11
Unit II Chapter 9 Sections 9.1 to 9.3, 9.13.
Unit III Chapter 9 Sections 9.5 to 9.12, 9.13.
Chapter 10 Sections 10.1, 10.2 and 10.4.
Unit IV Chapter 10 Sections 10.3 and 10.4.
Unit V Chapter 11 Sections 11.1 to 11.3 (Omit theorems 11.5 and 11.6)
References

SEMESTER VI - Core Paper – XV

Subject title: MODERN ALGEBRA - II
Credit hours: 6

Subject description:
This course provides knowledge about elementary operations on matrices, different types of matrices, rank of a matrix, spaces and linear transformations.

Goals:
It enables the students to understand the concept of matrices and linear transformations.

Objective:
On successful completion of course the students should have concrete knowledge about the elementary operations on matrices, characteristic vector of a square matrix, vector spaces and linear transformations.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

Treatment as in

 Unit I Chapter 1 Sections 1.1 to 1.3, 1.5 to 1.7
 Unit II Chapter 1 Sections 1.8 and 1.9
 Chapter 2 Section 2.9
 Chapter 3 Section 3.9
2. I.N. Herstein, Topics in Algebra, John Wiley & Sons, New York, 2003. (For Units III, IV & V)
 Unit III Chapter 4 Sections 4.1 and 4.2
 Unit IV Chapter 4 Sections 4.3 and 4.4
 Unit V Chapter 6 Sections 6.1, 6.2 and 6.3

References

Semester VI - Skill Based Subject

SUBJECT TITLE; OPERATION RESEARCH — Paper IV

PROJECT AND VIVA-VOCE:

PROJECT AREAS (BROAD FIELD)
1. Linear Programming Problems
2. Transportation Problems.
3. Assignment Problems
4. Inventory Control.
5. Queuing Models
6. PERT
7. Stochastic Process
8. Decision Analysis.
ELECTIVE I - A

SUBJECT TITLE: ASTRONOMY – I CREDIT HOURS: 5

Subject Description: This course focuses on the Solar system, Celestial sphere, Dip-Twilight & Kepler’s laws.

Goal: To enable the students to understand the Astronomical aspects and about the laws governing the planet movements.

Objectives: On successful completion of this course the students should gain knowledge about Astronomy.

UNIT I:

UNIT II:
Celestial sphere – Celestial co – ordinates – Diurnal motion – Variation in length of the day.

UNIT III:
Dip – Twilight – Geocentric parallex.

UNIT IV:
Refration – Tangent formula – Cassinis formula.

UNIT V:
Kepler’s laws – Relation between true eccentric and mean anamolies.

Treatment as in “ASTRONOMY” by S.Kumaravelu and Susheela Kumaravelu.

Question paper setters to confine to the above text book only.
ELECTIVE I - B

NUMERICAL METHODS - I

Subject Description:
This course presents method to solve linear algebraic and transcendental equations and system of linear equations. Also Interpolation by using finite difference formulae.

Goal:
It exposes the students to study numerical techniques as powerful tool in scientific computing.

Objective:
On successful completion of this course the student gain the knowledge about solving the linear equations numerically and finding interpolation by using difference formulae.

Unit I: The solution of numerical algebraic and transcendental Equations:

Unit II: Solution of simultaneous linear algebraic equations:

Unit III: Finite Differences:

Unit IV: Interpolation (for equal intervals):
- Newton’s forward and backward formulae – equidistant terms with one or more missing values – Central differences and central difference table – Gauss forward and backward formulae – Stirlings formula.

Unit V: Interpolation (for unequal intervals):
- Divided differences – Properties – Relations between divided differences and forward differences – Newton’s divided differences formula – Lagrange’s formula and inverse interpolation.

Treatment as in

References:
ELECTIVE I - C

(Theory & Practical)

Subject Title: RDBMS AND ORACLE **

No.of.Hours: 5

Subject Description: This paper presents the basic concepts of DBMS, Keys, RDBMS, introduction to SQL, ORACLE data types, Queries in SQL, introduction to PL/SQL, its basic structure, triggers, basic concepts of forms, reports and practical problems.

Goals: To enable the students to learn about the basic concepts of DBMS, RDBMS, SQL, PL/SQL, forms and Reports.

Objectives: On successful completion of the course the students should have learnt the basic concepts of DBMS and RDBMS.

Learn to build a queries using SQL, PL/SQL.

Learnt to design a forms and reports using ORACLE Developer 2000.

UNIT –I:

TEXT BOOKS: For unit 1 treatment as in “Introduction to Database System” – Bipin Desai [chapter 1, sections 4.2 and 6.5.1 and 6.5.2]

UNIT II:

Integrative SQL – invoking SQL plus, data manipulation in DBMS, The ORACLE data types, two dimention matrix creation, Intersection of data into tables, data constrains, computation in expression lists used to select data, logical operation, Range searching, pattern matching, Oracle function, Grouping data from tables in SQL, Manipulating dates on SQL, joins, sub queries.

UNIT III:

PL/SQL-Introduction, The PL/SQL execution environment, the PL/SQL syntax, Understanding the PL/SQL Block structure, database triggers.

UNIT IV:

Working with forms, Basic concepts, Application development in forms, Form module, Blocks items, Canvas view windows, Creating a form Generating and running a form, Using the Layout editor, Master form, Triggers, Data Navigation Via an Oracle form, Master detail form, Creating a master detail form, Master detail data entry screen.

UNIT V:

Working with reports, Defining a data model for report, specific the layout of a report, use the Oracle reports interface, Creating a default tabular report, Creating computed columns, Creating user parameter, Arranging the layout, Creating a Master / Detail report, Creating a matrix report.

TEXT BOOK:

For units 2, 3, 4, 5, treatment as in ‘Commercial application Development using Oracle developer 2000’ by IVAN BAYROSS.
RDBMS PRACTICAL LIST

1. Create a table ‘company’ with the following fields and insert the values for 10 employees.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Proprietor</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Address</td>
<td>Character</td>
<td>25</td>
</tr>
<tr>
<td>Supplier Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>No of employees</td>
<td>Number</td>
<td>4</td>
</tr>
<tr>
<td>GP percent</td>
<td>Number</td>
<td>6 with 2 decimal places</td>
</tr>
</tbody>
</table>

Queries:

a) Display all the records of the company which are in the ascending order of GP percent.
b) Display the detail of the company having the employee ranging from 300 to 1000.

2. Create a table named ‘employee’ with the following field and insert the values.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Employee code</td>
<td>Character</td>
<td>6</td>
</tr>
<tr>
<td>Address</td>
<td>Character</td>
<td>25</td>
</tr>
<tr>
<td>Designation</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Grade</td>
<td>Character</td>
<td>1</td>
</tr>
<tr>
<td>GP percent</td>
<td>Number</td>
<td>6 with 2 decimal places</td>
</tr>
</tbody>
</table>

Queries:

a) Display the name of the employees whose salary is greater than Rs.10, 000
b) Display the details of employees in ascending order according to employee code.
c) Display the total salary of the employees whose grade is “A”.

3. Create a table named “student” with the following fields and insert the values:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Gender</td>
<td>Character</td>
<td>6</td>
</tr>
<tr>
<td>Roll No</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Department Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Address</td>
<td>Character</td>
<td>25</td>
</tr>
<tr>
<td>Percentage</td>
<td>Number</td>
<td>4 with 2 decimal places</td>
</tr>
</tbody>
</table>

Queries:

a) Display the names of the students whose percentage is greater than 80.
b) Display the details of the student whose percentage is between 50 and 70.
c) Display the details of the students whose percentage is greater than the percentage of the Roll no =12CA01.

4. Create a table “product” with the following fields and insert the values:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product No</td>
<td>Number</td>
<td>6</td>
</tr>
<tr>
<td>Product Name</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Unit of Measure</td>
<td>Character</td>
<td>15</td>
</tr>
<tr>
<td>Quantity</td>
<td>Number</td>
<td>6 with decimal places</td>
</tr>
<tr>
<td>Total Amount</td>
<td>Number</td>
<td>8 with decimal places</td>
</tr>
</tbody>
</table>
Queries:

a) Using update statements calculate the total amount and then select the record.
b) Calculate the total amount by using sum operation.
c) Calculate the number of records whose unit price is greater than 50 with count Operation.

5. Create the table PAYROLL with the following fields and insert the value:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee No</td>
<td>Number</td>
<td>8</td>
</tr>
<tr>
<td>Employee Name</td>
<td>Character</td>
<td>8</td>
</tr>
<tr>
<td>Department</td>
<td>Character</td>
<td>10</td>
</tr>
<tr>
<td>Basic pay</td>
<td>Number</td>
<td>8 with 2 decimal places.</td>
</tr>
<tr>
<td>HRA</td>
<td>Number</td>
<td>6 with 2 decimal places.</td>
</tr>
<tr>
<td>DA</td>
<td>Number</td>
<td>6 with 2 decimal places.</td>
</tr>
<tr>
<td>PF</td>
<td>Number</td>
<td>6 with 2 decimal places.</td>
</tr>
<tr>
<td>Net Pay</td>
<td>Number</td>
<td>8 with 2 decimal places.</td>
</tr>
</tbody>
</table>

Queries:

a) Update the record to calculate the net pay
b) Arrange the records of employees in ascending order of their net pay.
c) Select the details of employees whose HRA >= 1000 and DA <= 900.
d) Display the details of the employee whose department is sales.

6. Create a table publisher and book with the following fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publisher Code</td>
<td>Varchar</td>
<td>5</td>
</tr>
<tr>
<td>Publisher Name</td>
<td>Varchar</td>
<td>10</td>
</tr>
<tr>
<td>Publisher City</td>
<td>Varchar</td>
<td>12</td>
</tr>
<tr>
<td>Publisher State</td>
<td>Varchar</td>
<td>10</td>
</tr>
<tr>
<td>Title of book</td>
<td>Varchar</td>
<td>15</td>
</tr>
<tr>
<td>Book Code</td>
<td>Varchar</td>
<td>5</td>
</tr>
<tr>
<td>Book Price</td>
<td>Varchar</td>
<td>5</td>
</tr>
</tbody>
</table>

Queries:

a) Insert the records into the table publisher and book
b) Describe the structure of the tables
c) Show the details of the book with the title ‘DBMS’.
d) Select the book code, book title, publisher city is ‘Delhi’.
e) Find the name of the publisher starting with ‘s’.

7. Create a table Deposit and loan with the following fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Type</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account</td>
<td>Varchar</td>
<td>6</td>
</tr>
<tr>
<td>Branch Name</td>
<td>Varchar</td>
<td>15</td>
</tr>
<tr>
<td>Customer Name</td>
<td>Varchar</td>
<td>20</td>
</tr>
</tbody>
</table>
Balance Amount Varchar 10
Loan Number Varchar 7
Loan Amount Varchar 6

Queries:
a) Insert the records into the table.
b) Describe the structure of the table
c) Display the records of Deposit and loan
d) Find the Maximum loan amount
e) Arrange the records in descending order of the loan amount

ELECTIVE II - A

Subject Title: ASTRONOMY II Credit Hours -5

Subject Description:
This course focuses on the Time, Annual Parallax, Precession, Nutation and The Moon, Eclipses.

Goal: To enable the students to learn about the interesting facts of Moon, Sun Planetary Motion.

Objectives: On successful completion of this course the students should gain knowledge about Astronomy.

UNIT-I: Time: Equation of time – Conversion of time – Seasons – Calendar.

UNIT-II: Annual Parallax – Abberation.

UNIT-V: Planetary Phenomenon – The Stellar system.

Treatment as in “ASTRONOMY” by Mr.S.Kumaravelu and Susheela Kumaravelu.

Question paper setters to confine to the above text book only.
ELECTIVE II-B

Numerical Methods II

Subject Description:
This course presents Numerical differentiation, Numerical integration and method to solve the differential equations.

Goal:
It exposes the students to study numerical techniques as powerful tool in scientific computing.

Objective:
On successful completion of this course the student gain the knowledge about solving the linear equations numerically and finding interpolation by using difference formulae.

Unit I: Numerical differentiations:
- Newton’s forward and backward formulae to compute the derivatives – Derivative using Stirlings formulae – to find maxima and minima of the function given the tabular values.

Unit II: Numerical Integration:
- Newton – Cote’s formula – Trapezoidal rule – Simpson’s 1/3rd and 3/8th rules – Gaissian quadrature
 - two points and three points formulae

Unit III: Difference Equation:
- Order and degree of a difference equation – solving homogeneous and non-homogeneous linear difference equations.

Unit IV:
- Taylor series method – Euler’s method – improved and modified Euler method – Runge Kutta method(fourth order Runge Kutta method only)

Unit V: Numerical solution of O.D.E(for first order only):
- Milne’s predictor corrector formulae – Adam-Bashforth predictor corrector formulae – solution of ordinary differential equations by finite difference method (for second order O.D.E).

Treatment as in

(Chapters: 9,10,11, Appendix and Appendix E).

References:
ELECTIVE II – C
(Theory & Practical)
INTERNET AND JAVA PROGRAMMING **
No. of credit hours: 3

Subject description:

This paper presents the introduction to internet, ISP, mail, web, URLs, schemes, browser, HTML, Usenet, Gopher, veronica, Jug head, Anonymous ftp, archie, telnet, talk, IRC and muds, Java introduction, data types, operators, statements, class, packages, interfaces, exception handling, threads, applets and AWTS.

Goals:

To enable the students to study about internet, mail, web, HTML, Usenet, Gopher, veronica, Jug head, Archie and Java fundamentals, class, packages, exception handling, threads, applets and AWTS.

Objectives:

On successful completion of the course the students should have:

- Learnt the basic concept of internet, mailing, HTML, Archie, telnet, ftp and IRC muds.
- Learnt about Java fundamentals, operators and statements.
- Learnt the concept of packages, interfaces and exception handling.
- Learnt the concept of threads, applets and AWTS.

UNIT I:

Introduction to Internet- Resources of Internet -hardware and software requirements of internet- Internet service providers (ISP)-Internet addressing- Mail Using mail from a shell account - Introduction to web- using the web.

UNIT II:

URLs, schemes host names and port numbers- Using the browser Hypertext and HTML- Using the web from a shell account Introduction to Usenet - Reading and posting Usenet articles- Using Usenet from a shell account- Gopher, Veronica and Jug head- Using gopher from a shell account.

UNIT III:

UNIT IV:

Features of java - java environment - comparing java with C++ - introduction to java language -types - operators - flow control - classes - packages and interfaces.

UNIT V:

Java classes - string handling- exception handling - threads and synchronization - utilities - input / output - networking - applets - abstract windows toolkit (AWT)-imaging.

Text book:

INTERNET AND JAVA PROGRAMMING PRACTICAL LIST

1. Create web pages using HTML to display ordered and unordered list of a departmental store.
2. Program to display image and text using HTML tag for an advertisement of a company product.
3. Create web pages for a business organization using HTML frames.
4. Create a web site of your department with minimum links using HTML.
5. Create a document using formatting and alignment tags in HTML.
6. Write a Java program to print the triangle of numbers.
7. Write a program which creates and displays a message on the windows.
8. Write a program to draw several shapes in the created window.
9. Write a Java program to accept values and find the given no. is even or odd.
10. Write a Java program to calculate standard deviation.

ELECTIVE III - A

Subject Title: GRAPH THEORY

Credit Hours: 5

Subject Description:
This course focuses on the Graphs, Sub Graphs, Trees, Planar graphs, Directed graphs. It also deals about matrix representation of Graphs.

Goal:
To enable the students to understand the basic concepts of Graph Theory.

Objectives:
On successful completion of this course the students should gain knowledge about Graph Theory.

UNIT I:

UNIT II:

UNIT III:
Matrix representation of a graph – vector spaces, associated with a graph – cycle spaces and cut set graphs.

UNIT IV:
Planar graphs – Enter’s theorem on planar graphs – characterization of planar graphs (no proofs) of the difficult part of the characterization.
UNIT V:
Directed graphs – Connectivity – Enteoriom Digraphs – Tournaments.

Treatment as in “A First Course in Graph Theory” by A. Chandran (Macmillan) Chapters 1 to 7.

Books for References:
1. Narasingh Deo, “Graph Theory” (Prentice Hall of India).

ELECTIVE III - B

AUTOMATA THEORY AND FORMAL LANGUAGES

UNIT – I
Introduction – phrase structure languages.

UNIT – II
Closure operations.

UNIT – III
Context free languages.

UNIT – IV
Finite state automata.

UNIT – V
Push down automata.

Content and treatment as in, ‘Formal Languages and Automata’ by Rani Sriomoney. Revised edition 1984. Published by the Christian Literary Society, Madras-3 Chapters 1 to 6.

Reference Books:
ELECTIVE III - C
(Theory & Practical)

Subject Title: PROGRAMMING IN C++ **

Subject Description: This paper presents the importance of class structure, operators, the types of inheritance and polymorphism, file handling.

Goals: To enable the students to learn about the class structure, operators, inheritance, polymorphism, file handling.

Objectives: On successful completion of the course the students should have learnt class structure, member functions & data members.

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:

UNIT-V:

Text Books:
1. E.Balagurusamy - ‘Object Oriented programming with C++’, McGraw Hill.

Reference Books:

PROGRAMMING IN C++ - PRACTICAL LIST.

1. Write a function ‘power()’ to raise a number ‘m’ to a power ‘n’. The function takes a ‘double’ value for ‘m’ and ‘int’ value for ‘n’, and returns the result correctly. Use a default value of 2 for ‘n’ to make the function to calculate squares when this argument is omitted. Write a ‘main()’ that gets the values of ‘m’ and ‘n’ from the user to test the function.

2. Write a program to compute compound interest of a given amount AMT for ‘n’ years. Use function overloading so that the program gets input of interest rate RATE in any of the data type ‘float’ or ‘int’.

3. Create a class which consist of employee detail ENO, ENAME, DEPT, BASIC SALARY. Write a member function to get and display them. Derive a class PAY from the above class and write a member function to calculate DA, HRA and PF depending on the grade and display the payslip in a neat format using console I/O.

4. Define two classes POLAR and RECTANGLE to represent points in the polar and rectangle system. Write a program to convert from one system to another.

5. Create a class FLOAT that contains one float data member. Overload all the four arithmetic operators so that they operate on the objects of FLOAT.